Publication Date
In 2025 | 7 |
Since 2024 | 47 |
Since 2021 (last 5 years) | 101 |
Since 2016 (last 10 years) | 198 |
Since 2006 (last 20 years) | 343 |
Descriptor
Error of Measurement | 491 |
Models | 202 |
Structural Equation Models | 134 |
Mathematical Models | 125 |
Statistical Analysis | 106 |
Goodness of Fit | 95 |
Computation | 94 |
Comparative Analysis | 83 |
Simulation | 82 |
Item Response Theory | 80 |
Sample Size | 75 |
More ▼ |
Source
Author
Marsh, Herbert W. | 7 |
Zhang, Zhiyong | 6 |
Ke-Hai Yuan | 5 |
Wolfle, Lee M. | 5 |
Cai, Li | 4 |
DeMars, Christine E. | 4 |
Finch, W. Holmes | 4 |
Leite, Walter L. | 4 |
Little, Todd D. | 4 |
McCaffrey, Daniel F. | 4 |
Raykov, Tenko | 4 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 26 |
Teachers | 2 |
Policymakers | 1 |
Practitioners | 1 |
Students | 1 |
Location
United Kingdom (England) | 4 |
United States | 4 |
Belgium | 3 |
California | 3 |
Cyprus | 3 |
Germany | 3 |
Turkey | 3 |
United Kingdom | 3 |
Ireland | 2 |
Italy | 2 |
North Carolina | 2 |
More ▼ |
Laws, Policies, & Programs
Elementary and Secondary… | 3 |
Race to the Top | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Steffen Erickson – Society for Research on Educational Effectiveness, 2024
Background: Structural Equation Modeling (SEM) is a powerful and broadly utilized statistical framework. Researchers employ these models to dissect relationships into direct, indirect, and total effects (Bollen, 1989). These models unpack the "black box" issues within cause-and-effect studies by examining the underlying theoretical…
Descriptors: Structural Equation Models, Causal Models, Research Methodology, Error of Measurement
Myoung-jae Lee; Goeun Lee; Jin-young Choi – Sociological Methods & Research, 2025
A linear model is often used to find the effect of a binary treatment D on a noncontinuous outcome Y with covariates X. Particularly, a binary Y gives the popular "linear probability model (LPM)," but the linear model is untenable if X contains a continuous regressor. This raises the question: what kind of treatment effect does the…
Descriptors: Probability, Least Squares Statistics, Regression (Statistics), Causal Models
Xiaohui Luo; Yueqin Hu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Intensive longitudinal data has been widely used to examine reciprocal or causal relations between variables. However, these variables may not be temporally aligned. This study examined the consequences and solutions of the problem of temporal misalignment in intensive longitudinal data based on dynamic structural equation models. First the impact…
Descriptors: Structural Equation Models, Longitudinal Studies, Data Analysis, Causal Models
Emma Somer; Carl Falk; Milica Miocevic – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Factor Score Regression (FSR) is increasingly employed as an alternative to structural equation modeling (SEM) in small samples. Despite its popularity in psychology, the performance of FSR in multigroup models with small samples remains relatively unknown. The goal of this study was to examine the performance of FSR, namely Croon's correction and…
Descriptors: Scores, Structural Equation Models, Comparative Analysis, Sample Size
Ke-Hai Yuan; Zhiyong Zhang; Lijuan Wang – Grantee Submission, 2024
Mediation analysis plays an important role in understanding causal processes in social and behavioral sciences. While path analysis with composite scores was criticized to yield biased parameter estimates when variables contain measurement errors, recent literature has pointed out that the population values of parameters of latent-variable models…
Descriptors: Structural Equation Models, Path Analysis, Weighted Scores, Comparative Testing
The Impact of Measurement Noninvariance across Time and Group in Longitudinal Item Response Modeling
In-Hee Choi – Asia Pacific Education Review, 2024
Longitudinal item response data often exhibit two types of measurement noninvariance: the noninvariance of item parameters between subject groups and that of item parameters across multiple time points. This study proposes a comprehensive approach to the simultaneous modeling of both types of measurement noninvariance in terms of longitudinal item…
Descriptors: Longitudinal Studies, Item Response Theory, Growth Models, Error of Measurement
Xiaowen Liu – International Journal of Testing, 2024
Differential item functioning (DIF) often arises from multiple sources. Within the context of multidimensional item response theory, this study examined DIF items with varying secondary dimensions using the three DIF methods: SIBTEST, Mantel-Haenszel, and logistic regression. The effect of the number of secondary dimensions on DIF detection rates…
Descriptors: Item Analysis, Test Items, Item Response Theory, Correlation
Qian Zhang; Qi Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In the article, we focused on the issues of measurement error and omitted confounders while conducting mediation analysis under experimental studies. Depending on informativeness of the confounders between the mediator (M) and outcome (Y), we described two approaches. When researchers are confident that primary confounders are included (e.g.,…
Descriptors: Error of Measurement, Research and Development, Mediation Theory, Causal Models
Gorney, Kylie; Wollack, James A. – Journal of Educational Measurement, 2023
In order to detect a wide range of aberrant behaviors, it can be useful to incorporate information beyond the dichotomous item scores. In this paper, we extend the l[subscript z] and l*[subscript z] person-fit statistics so that unusual behavior in item scores and unusual behavior in item distractors can be used as indicators of aberrance. Through…
Descriptors: Test Items, Scores, Goodness of Fit, Statistics
Suppanut Sriutaisuk; Yu Liu; Seungwon Chung; Hanjoe Kim; Fei Gu – Educational and Psychological Measurement, 2025
The multiple imputation two-stage (MI2S) approach holds promise for evaluating the model fit of structural equation models for ordinal variables with multiply imputed data. However, previous studies only examined the performance of MI2S-based residual-based test statistics. This study extends previous research by examining the performance of two…
Descriptors: Structural Equation Models, Error of Measurement, Programming Languages, Goodness of Fit
Dan Wei; Peida Zhan; Hongyun Liu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In latent growth curve modeling (LGCM), overall fit indices have garnered increased disputation for model selection, and model fit evaluation based on the mean structure has becoming popularity. The present study developed a versatile fit index, named Weighted Root Mean Squared Errors (WRMSE), based on individual case residuals (ICRs) with the aim…
Descriptors: Structural Equation Models, Goodness of Fit, Error of Measurement, Computation
Chunhua Cao; Xinya Liang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Cross-loadings are common in multiple-factor confirmatory factor analysis (CFA) but often ignored in measurement invariance testing. This study examined the impact of ignoring cross-loadings on the sensitivity of fit measures (CFI, RMSEA, SRMR, SRMRu, AIC, BIC, SaBIC, LRT) to measurement noninvariance. The manipulated design factors included the…
Descriptors: Goodness of Fit, Error of Measurement, Sample Size, Factor Analysis
Tenko Raykov – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This note demonstrates that measurement invariance does not guarantee meaningful and valid group comparisons in multiple-population settings. The article follows on a recent critical discussion by Robitzsch and Lüdtke, who argued that measurement invariance was not a pre-requisite for such comparisons. Within the framework of common factor…
Descriptors: Error of Measurement, Prerequisites, Factor Analysis, Evaluation Methods
Jiaying Xiao; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Accurate item parameters and standard errors (SEs) are crucial for many multidimensional item response theory (MIRT) applications. A recent study proposed the Gaussian Variational Expectation Maximization (GVEM) algorithm to improve computational efficiency and estimation accuracy (Cho et al., 2021). However, the SE estimation procedure has yet to…
Descriptors: Error of Measurement, Models, Evaluation Methods, Item Analysis
David Goretzko; Karik Siemund; Philipp Sterner – Educational and Psychological Measurement, 2024
Confirmatory factor analyses (CFA) are often used in psychological research when developing measurement models for psychological constructs. Evaluating CFA model fit can be quite challenging, as tests for exact model fit may focus on negligible deviances, while fit indices cannot be interpreted absolutely without specifying thresholds or cutoffs.…
Descriptors: Factor Analysis, Goodness of Fit, Psychological Studies, Measurement