Publication Date
In 2025 | 0 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 19 |
Since 2006 (last 20 years) | 32 |
Descriptor
Source
Author
Ke-Hai Yuan | 3 |
Reardon, Sean F. | 3 |
Ling Ling | 2 |
Paek, Insu | 2 |
Shear, Benjamin R. | 2 |
Yuan, Ke-Hai | 2 |
Zhang, Zhiyong | 2 |
Zhiyong Zhang | 2 |
Algina, James | 1 |
Bargagliotti, Anna | 1 |
Barreca, Alan I. | 1 |
More ▼ |
Publication Type
Reports - Research | 44 |
Journal Articles | 30 |
Speeches/Meeting Papers | 5 |
Education Level
Secondary Education | 4 |
Elementary Education | 3 |
Higher Education | 3 |
High Schools | 2 |
Postsecondary Education | 2 |
Early Childhood Education | 1 |
Grade 3 | 1 |
Grade 4 | 1 |
Grade 7 | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
More ▼ |
Audience
Researchers | 5 |
Teachers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Alabama High School… | 1 |
National Longitudinal Survey… | 1 |
National Merit Scholarship… | 1 |
Peabody Individual… | 1 |
Preliminary Scholastic… | 1 |
What Works Clearinghouse Rating
Han Du; Hao Wu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Real data are unlikely to be exactly normally distributed. Ignoring non-normality will cause misleading and unreliable parameter estimates, standard error estimates, and model fit statistics. For non-normal data, researchers have proposed a distributionally-weighted least squares (DLS) estimator to combines the normal theory based generalized…
Descriptors: Least Squares Statistics, Matrices, Statistical Distributions, Bayesian Statistics
Christine E. DeMars; Paulius Satkus – Educational and Psychological Measurement, 2024
Marginal maximum likelihood, a common estimation method for item response theory models, is not inherently a Bayesian procedure. However, due to estimation difficulties, Bayesian priors are often applied to the likelihood when estimating 3PL models, especially with small samples. Little focus has been placed on choosing the priors for marginal…
Descriptors: Item Response Theory, Statistical Distributions, Error of Measurement, Bayesian Statistics
Ke-Hai Yuan; Yongfei Fang – Grantee Submission, 2023
Observational data typically contain measurement errors. Covariance-based structural equation modelling (CB-SEM) is capable of modelling measurement errors and yields consistent parameter estimates. In contrast, methods of regression analysis using weighted composites as well as a partial least squares approach to SEM facilitate the prediction and…
Descriptors: Structural Equation Models, Regression (Statistics), Weighted Scores, Comparative Analysis
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Grantee Submission, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Paek, Insu; Lin, Zhongtian; Chalmers, Robert Philip – Educational and Psychological Measurement, 2023
To reduce the chance of Heywood cases or nonconvergence in estimating the 2PL or the 3PL model in the marginal maximum likelihood with the expectation-maximization (MML-EM) estimation method, priors for the item slope parameter in the 2PL model or for the pseudo-guessing parameter in the 3PL model can be used and the marginal maximum a posteriori…
Descriptors: Models, Item Response Theory, Test Items, Intervals
Turner, Kyle T.; Engelhard, George, Jr. – Measurement: Interdisciplinary Research and Perspectives, 2023
The purpose of this study is to illustrate the use of functional data analysis (FDA) as a general methodology for analyzing person response functions (PRFs). Applications of FDA to psychometrics have included the estimation of item response functions and latent distributions, as well as differential item functioning. Although FDA has been…
Descriptors: Data Analysis, Item Response Theory, Psychometrics, Statistical Distributions
Pavlov, Goran; Maydeu-Olivares, Alberto; Shi, Dexin – Educational and Psychological Measurement, 2021
We examine the accuracy of p values obtained using the asymptotic mean and variance (MV) correction to the distribution of the sample standardized root mean squared residual (SRMR) proposed by Maydeu-Olivares to assess the exact fit of SEM models. In a simulation study, we found that under normality, the MV-corrected SRMR statistic provides…
Descriptors: Structural Equation Models, Goodness of Fit, Simulation, Error of Measurement
Shear, Benjamin R.; Reardon, Sean F. – Journal of Educational and Behavioral Statistics, 2021
This article describes an extension to the use of heteroskedastic ordered probit (HETOP) models to estimate latent distributional parameters from grouped, ordered-categorical data by pooling across multiple waves of data. We illustrate the method with aggregate proficiency data reporting the number of students in schools or districts scoring in…
Descriptors: Statistical Analysis, Computation, Regression (Statistics), Sample Size
Yongyun Shin; Stephen W. Raudenbush – Grantee Submission, 2023
We consider two-level models where a continuous response R and continuous covariates C are assumed missing at random. Inferences based on maximum likelihood or Bayes are routinely made by estimating their joint normal distribution from observed data R[subscript obs] and C[subscript obs]. However, if the model for R given C includes random…
Descriptors: Maximum Likelihood Statistics, Hierarchical Linear Modeling, Error of Measurement, Statistical Distributions
von Oertzen, Timo; Schmiedek, Florian; Voelkle, Manuel C. – Journal of Intelligence, 2020
Properties of psychological variables at the mean or variance level can differ between persons and within persons across multiple time points. For example, cross-sectional findings between persons of different ages do not necessarily reflect the development of a single person over time. Recently, there has been an increased interest in the…
Descriptors: Cognitive Ability, Individual Differences, Statistical Analysis, Factor Analysis
Shear, Benjamin R.; Reardon, Sean F. – Stanford Center for Education Policy Analysis, 2019
This paper describes a method for pooling grouped, ordered-categorical data across multiple waves to improve small-sample heteroskedastic ordered probit (HETOP) estimates of latent distributional parameters. We illustrate the method with aggregate proficiency data reporting the number of students in schools or districts scoring in each of a small…
Descriptors: Computation, Scores, Statistical Distributions, Sample Size
Tong, Xin; Zhang, Zhiyong – Grantee Submission, 2020
Despite broad applications of growth curve models, few studies have dealt with a practical issue -- nonnormality of data. Previous studies have used Student's "t" distributions to remedy the nonnormal problems. In this study, robust distributional growth curve models are proposed from a semiparametric Bayesian perspective, in which…
Descriptors: Robustness (Statistics), Bayesian Statistics, Models, Error of Measurement
Li, Jian; Lomax, Richard G. – Journal of Experimental Education, 2017
Using Monte Carlo simulations, this research examined the performance of four missing data methods in SEM under different multivariate distributional conditions. The effects of four independent variables (sample size, missing proportion, distribution shape, and factor loading magnitude) were investigated on six outcome variables: convergence rate,…
Descriptors: Monte Carlo Methods, Structural Equation Models, Evaluation Methods, Measurement Techniques
Miratrix, Luke; Feller, Avi; Pillai, Natesh; Pati, Debdeep – Society for Research on Educational Effectiveness, 2016
Modeling the distribution of site level effects is an important problem, but it is also an incredibly difficult one. Current methods rely on distributional assumptions in multilevel models for estimation. There it is hoped that the partial pooling of site level estimates with overall estimates, designed to take into account individual variation as…
Descriptors: Probability, Models, Statistical Distributions, Bayesian Statistics