NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 54 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tong Wu; Stella Y. Kim; Carl Westine; Michelle Boyer – Journal of Educational Measurement, 2025
While significant attention has been given to test equating to ensure score comparability, limited research has explored equating methods for rater-mediated assessments, where human raters inherently introduce error. If not properly addressed, these errors can undermine score interchangeability and test validity. This study proposes an equating…
Descriptors: Item Response Theory, Evaluators, Error of Measurement, Test Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Timothy Lycurgus; Daniel Almirall – Society for Research on Educational Effectiveness, 2024
Background: Education scientists are increasingly interested in constructing interventions that are adaptive over time to suit the evolving needs of students, classrooms, or schools. Such "adaptive interventions" (also referred to as dynamic treatment regimens or dynamic instructional regimes) determine which treatment should be offered…
Descriptors: Educational Research, Research Design, Randomized Controlled Trials, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Julian F. Lohmann; Steffen Zitzmann; Martin Hecht – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The recently proposed "continuous-time latent curve model with structured residuals" (CT-LCM-SR) addresses several challenges associated with longitudinal data analysis in the behavioral sciences. First, it provides information about process trends and dynamics. Second, using the continuous-time framework, the CT-LCM-SR can handle…
Descriptors: Time Management, Behavioral Science Research, Predictive Validity, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Martinková, Patrícia; Bartoš, František; Brabec, Marek – Journal of Educational and Behavioral Statistics, 2023
Inter-rater reliability (IRR), which is a prerequisite of high-quality ratings and assessments, may be affected by contextual variables, such as the rater's or ratee's gender, major, or experience. Identification of such heterogeneity sources in IRR is important for the implementation of policies with the potential to decrease measurement error…
Descriptors: Interrater Reliability, Bayesian Statistics, Statistical Inference, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Hitczenko, Marcin – Sociological Methods & Research, 2022
Researchers interested in studying the frequency of events or behaviors among a population must rely on count data provided by sampled individuals. Often, this involves a decision between live event counting, such as a behavioral diary, and recalled aggregate counts. Diaries are generally more accurate, but their greater cost and respondent burden…
Descriptors: Surveys, Social Science Research, Recall (Psychology), Diaries
Peer reviewed Peer reviewed
Direct linkDirect link
Miratrix, Luke W.; Weiss, Michael J.; Henderson, Brit – Journal of Research on Educational Effectiveness, 2021
Researchers face many choices when conducting large-scale multisite individually randomized control trials. One of the most common quantities of interest in multisite RCTs is the overall average effect. Even this quantity is non-trivial to define and estimate. The researcher can target the average effect across individuals or sites. Furthermore,…
Descriptors: Computation, Randomized Controlled Trials, Error of Measurement, Regression (Statistics)
Yongyun Shin; Stephen W. Raudenbush – Grantee Submission, 2023
We consider two-level models where a continuous response R and continuous covariates C are assumed missing at random. Inferences based on maximum likelihood or Bayes are routinely made by estimating their joint normal distribution from observed data R[subscript obs] and C[subscript obs]. However, if the model for R given C includes random…
Descriptors: Maximum Likelihood Statistics, Hierarchical Linear Modeling, Error of Measurement, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Baek, Eunkyeng; Luo, Wen; Henri, Maria – Journal of Experimental Education, 2022
It is common to include multiple dependent variables (DVs) in single-case experimental design (SCED) meta-analyses. However, statistical issues associated with multiple DVs in the multilevel modeling approach (i.e., possible dependency of error, heterogeneous treatment effects, and heterogeneous error structures) have not been fully investigated.…
Descriptors: Meta Analysis, Hierarchical Linear Modeling, Comparative Analysis, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Jia, Yuane; Konold, Timothy – Journal of Experimental Education, 2021
Traditional observed variable multilevel models for evaluating indirect effects are limited by their inability to quantify measurement and sampling error. They are further restricted by being unable to fully separate within- and between-level effects without bias. Doubly latent models reduce these biases by decomposing the observed within-level…
Descriptors: Hierarchical Linear Modeling, Educational Environment, Aggression, Bullying
Xue Zhang; Chun Wang – Grantee Submission, 2021
Among current state-of-art estimation methods for multilevel IRT models, the two-stage divide-and-conquer strategy has practical advantages, such as clearer definition of factors, convenience for secondary data analysis, convenience for model calibration and fit evaluation, and avoidance of improper solutions. However, various studies have shown…
Descriptors: Error of Measurement, Error Correction, Item Response Theory, Comparative Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lee, Hyung Rock; Lee, Sunbok; Sung, Jaeyun – International Journal of Assessment Tools in Education, 2019
Applying single-level statistical models to multilevel data typically produces underestimated standard errors, which may result in misleading conclusions. This study examined the impact of ignoring multilevel data structure on the estimation of item parameters and their standard errors of the Rasch, two-, and three-parameter logistic models in…
Descriptors: Item Response Theory, Computation, Error of Measurement, Test Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Joo, Seang-Hwane; Ferron, John M.; Moeyaert, Mariola; Beretvas, S. Natasha; Van den Noortgate, Wim – Journal of Experimental Education, 2019
Multilevel modeling has been utilized for combining single-case experimental design (SCED) data assuming simple level-1 error structures. The purpose of this study is to compare various multilevel analysis approaches for handling potential complexity in the level-1 error structure within SCED data, including approaches assuming simple and complex…
Descriptors: Hierarchical Linear Modeling, Synthesis, Data Analysis, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Chang, Wanchen; Pituch, Keenan A. – Journal of Experimental Education, 2019
When data for multiple outcomes are collected in a multilevel design, researchers can select a univariate or multivariate analysis to examine group-mean differences. When correlated outcomes are incomplete, a multivariate multilevel model (MVMM) may provide greater power than univariate multilevel models (MLMs). For a two-group multilevel design…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Research Problems, Error of Measurement
Jamshidi, Laleh; Declercq, Lies; Fernández-Castilla, Belén; Ferron, John M.; Moeyaert, Mariola; Beretvas, S. Natasha; Van den Noortgate, Wim – Grantee Submission, 2020
The focus of the current study is on handling the dependence among multiple regression coefficients representing the treatment effects when meta-analyzing data from single-case experimental studies. We compare the results when applying three different multilevel meta-analytic models (i.e., a univariate multilevel model avoiding the dependence, a…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Meta Analysis, Regression (Statistics)
Reardon, Sean F.; Ho, Andrew D.; Kalogrides, Demetra – Stanford Center for Education Policy Analysis, 2019
Linking score scales across different tests is considered speculative and fraught, even at the aggregate level (Feuer et al., 1999; Thissen, 2007). We introduce and illustrate validation methods for aggregate linkages, using the challenge of linking U.S. school district average test scores across states as a motivating example. We show that…
Descriptors: Test Validity, Evaluation Methods, School Districts, Scores
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4