Publication Date
| In 2026 | 0 |
| Since 2025 | 3 |
| Since 2022 (last 5 years) | 14 |
| Since 2017 (last 10 years) | 22 |
| Since 2007 (last 20 years) | 27 |
Descriptor
Source
Author
| Barnes, Tiffany | 2 |
| Dawyndt, Peter | 2 |
| Joy, Mike | 2 |
| Kermek, Dragutin | 2 |
| Maertens, Rien | 2 |
| Marwan, Samiha | 2 |
| Mesuere, Bart | 2 |
| Novak, Matija | 2 |
| Strijbol, Niko | 2 |
| Van Petegem, Charlotte | 2 |
| Abdalla, Mohamed | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 27 |
| Journal Articles | 23 |
| Speeches/Meeting Papers | 3 |
| Information Analyses | 1 |
| Tests/Questionnaires | 1 |
Education Level
| Higher Education | 12 |
| Postsecondary Education | 11 |
| Secondary Education | 4 |
| High Schools | 2 |
| Elementary Secondary Education | 1 |
| Junior High Schools | 1 |
| Middle Schools | 1 |
Audience
| Researchers | 1 |
Location
| China (Beijing) | 1 |
| Hungary | 1 |
| South Africa | 1 |
| Taiwan | 1 |
| Utah | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| ACT Assessment | 1 |
| Gregorc Style Delineator | 1 |
What Works Clearinghouse Rating
Austin Wyman; Zhiyong Zhang – Grantee Submission, 2025
Automated detection of facial emotions has been an interesting topic for multiple decades in social and behavioral research but is only possible very recently. In this tutorial, we review three popular artificial intelligence based emotion detection programs that are accessible to R programmers: Google Cloud Vision, Amazon Rekognition, and…
Descriptors: Artificial Intelligence, Algorithms, Computer Software, Identification
Zifeng Liu; Wanli Xing; Xinyue Jiao; Chenglu Li; Wangda Zhu – Education and Information Technologies, 2025
The ability of large language models (LLMs) to generate code has raised concerns in computer science education, as students may use tools like ChatGPT for programming assignments. While much research has focused on higher education, especially for languages like Java and Python, little attention has been given to K-12 settings, particularly for…
Descriptors: High School Students, Coding, Artificial Intelligence, Electronic Learning
Cheers, Hayden; Lin, Yuqing – Computer Science Education, 2023
Background and Context: Source code plagiarism is a common occurrence in undergraduate computer science education. Many source code plagiarism detection tools have been proposed to address this problem. However, such tools do not identify plagiarism, nor suggest what assignment submissions are suspicious of plagiarism. Source code plagiarism…
Descriptors: Plagiarism, Programming, Computer Science Education, Identification
Linjing Wu; Xuelin Xiang; Xueyan Yang; Xuan Jin; Liang Chen; Qingtang Liu – Educational Technology Research and Development, 2025
Problem-solving strategies are crucial in learning programming. Owing to their hidden nature, traditional methods such as interviews and questionnaires cannot reflect the details and differences of problem-solving strategies in programming. This study uses the Hidden Markov Model to detect and compare the problem-solving strategies of different…
Descriptors: Markov Processes, Problem Solving, Programming, Identification
Dong, Yihuan; Marwan, Samiha; Shabrina, Preya; Price, Thomas; Barnes, Tiffany – International Educational Data Mining Society, 2021
Over the years, researchers have studied novice programming behaviors when doing assignments and projects to identify struggling students. Much of these efforts focused on using student programming and interaction features to predict student success at a course level. While these methods are effective at early detection of struggling students in…
Descriptors: Navigation (Information Systems), Academic Achievement, Learner Engagement, Programming
Van Petegem, Charlotte; Deconinck, Louise; Mourisse, Dieter; Maertens, Rien; Strijbol, Niko; Dhoedt, Bart; De Wever, Bram; Dawyndt, Peter; Mesuere, Bart – Journal of Educational Computing Research, 2023
We present a privacy-friendly early-detection framework to identify students at risk of failing in introductory programming courses at university. The framework was validated for two different courses with annual editions taken by higher education students (N = 2 080) and was found to be highly accurate and robust against variation in course…
Descriptors: Pass Fail Grading, At Risk Students, Introductory Courses, Programming
Sanosi, Abdulaziz; Abdalla, Mohamed – Australian Journal of Applied Linguistics, 2021
This study aimed to examine the potentials of the NLP approach in detecting discourse markers (DMs), namely okay, in transcribed spoken data. One hundred thirty-eight concordance lines were presented to human referees to judge the functions of okay in them as a DM or Non-DM. After that, the researchers used a Python script written according to the…
Descriptors: Natural Language Processing, Computational Linguistics, Programming Languages, Accuracy
Marwan, Samiha; Shi, Yang; Menezes, Ian; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2021
Feedback on how students progress through completing subgoals can improve students' learning and motivation in programming. Detecting subgoal completion is a challenging task, and most learning environments do so either with "expert-authored" models or with "data-driven" models. Both models have advantages that are…
Descriptors: Expertise, Models, Feedback (Response), Identification
Maertens, Rien; Van Petegem, Charlotte; Strijbol, Niko; Baeyens, Toon; Jacobs, Arne Carla; Dawyndt, Peter; Mesuere, Bart – Journal of Computer Assisted Learning, 2022
Background: Learning to code is increasingly embedded in secondary and higher education curricula, where solving programming exercises plays an important role in the learning process and in formative and summative assessment. Unfortunately, students admit that copying code from each other is a common practice and teachers indicate they rarely use…
Descriptors: Plagiarism, Benchmarking, Coding, Computer Science Education
Schoeman, Marthie – Perspectives in Education, 2019
Due to the character of programming languages, reading ability may have more impact on learning to program than on learning in other subjects. This paper describes an exploratory study of the relationship between reading skills, as perceived through eye tracking, and the ability to program. An empirical investigation into this relationship…
Descriptors: Reading Skills, Predictor Variables, Programming, Novices
Emery-Wetherell, Meaghan; Wang, Ruoyao – Assessment & Evaluation in Higher Education, 2023
Over four semesters of a large introductory statistics course the authors found students were engaging in contract cheating on Chegg.com during multiple choice examinations. In this paper we describe our methodology for identifying, addressing and eventually eliminating cheating. We successfully identified 23 out of 25 students using a combination…
Descriptors: Computer Assisted Testing, Multiple Choice Tests, Cheating, Identification
Tsabari, Stav; Segal, Avi; Gal, Kobi – International Educational Data Mining Society, 2023
Automatically identifying struggling students learning to program can assist teachers in providing timely and focused help. This work presents a new deep-learning language model for predicting "bug-fix-time", the expected duration between when a software bug occurs and the time it will be fixed by the student. Such information can guide…
Descriptors: College Students, Computer Science Education, Programming, Error Patterns
Varga, Erika B.; Sátán, Ádám – Hungarian Educational Research Journal, 2021
The purpose of this paper is to investigate the pre-enrollment attributes of first-year students at Computer Science BSc programs of the University of Miskolc, Hungary in order to find those that mostly contribute to failure on the Programming Basics first-semester course and, consequently to dropout. Our aim is to detect at-risk students early,…
Descriptors: Identification, At Risk Students, Computer Science Education, Undergraduate Students
Jia, Jiyou; He, Yunfan – Interactive Technology and Smart Education, 2022
Purpose: The purpose of this study is to design and implement an intelligent online proctoring system (IOPS) by using the advantage of artificial intelligence technology in order to monitor the online exam, which is urgently needed in online learning settings worldwide. As a pilot application, the authors used this system in an authentic…
Descriptors: Artificial Intelligence, Supervision, Computer Assisted Testing, Electronic Learning
LópezLeiva, Carlos A.; Noriega, Gabino; Celedón-Pattichis, Sylvia; Pattichis, Marios S. – Teachers College Record, 2022
Background/Context: Computer programming is rarely accessible to K-12 students, especially for those from culturally and linguistically diverse backgrounds. Middle school age is a transitioning time when adolescents are more likely to make long-term decisions regarding their academic choices and interests. Having access to productive and positive…
Descriptors: Hispanic American Students, Student Experience, Mathematics Education, Programming
Previous Page | Next Page »
Pages: 1 | 2
Peer reviewed
Direct link
