Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 7 |
Descriptor
Inferences | 7 |
Natural Language Processing | 7 |
Semantics | 4 |
Models | 3 |
Reading Comprehension | 3 |
Accuracy | 2 |
Artificial Intelligence | 2 |
Automation | 2 |
Computational Linguistics | 2 |
Computer Software | 2 |
Scores | 2 |
More ▼ |
Author
Publication Type
Reports - Research | 7 |
Speeches/Meeting Papers | 4 |
Journal Articles | 2 |
Education Level
Higher Education | 2 |
Postsecondary Education | 1 |
Audience
Location
France | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Andreea Dutulescu; Stefan Ruseti; Denis Iorga; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
The process of generating challenging and appropriate distractors for multiple-choice questions is a complex and time-consuming task. Existing methods for an automated generation have limitations in proposing challenging distractors, or they fail to effectively filter out incorrect choices that closely resemble the correct answer, share synonymous…
Descriptors: Multiple Choice Tests, Artificial Intelligence, Attention, Natural Language Processing
Corlatescu, Dragos-Georgian; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2021
Reading comprehension is key to knowledge acquisition and to reinforcing memory for previous information. While reading, a mental representation is constructed in the reader's mind. The mental model comprises the words in the text, the relations between the words, and inferences linking to concepts in prior knowledge. The automated model of…
Descriptors: Reading Comprehension, Reading Processes, Memory, Schemata (Cognition)
Nicula, Bogdan; Perret, Cecile A.; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2020
Open-ended comprehension questions are a common type of assessment used to evaluate how well students understand one of multiple documents. Our aim is to use natural language processing (NLP) to infer the level and type of inferencing within readers' answers to comprehension questions using linguistic and semantic features within their responses.…
Descriptors: Natural Language Processing, Taxonomy, Responses, Semantics
Magliano, Joseph P.; Lampi, Jodi P.; Ray, Melissa; Chan, Greta – Grantee Submission, 2020
Coherent mental models for successful comprehension require inferences that establish semantic "bridges" between discourse constituents and "elaborations" that incorporate relevant background knowledge. While it is established that individual differences in the extent to which postsecondary students engage in these processes…
Descriptors: Reading Comprehension, Reading Strategies, Inferences, Reading Tests
Keezhatta, Muhammed Salim – Arab World English Journal, 2019
Natural Language Processing (NLP) platforms have recently reported a higher adoption rate of Artificial Intelligence (AI) applications. The purpose of this research is to examine the relationship between NLP and AI in the application of linguistic tasks related to morphology, parsing, and semantics. To achieve this objective, a theoretical…
Descriptors: Models, Correlation, Natural Language Processing, Artificial Intelligence
Allen, Laura K.; Perret, Cecile; McNamara, Danielle S. – Grantee Submission, 2016
The relationship between working memory capacity and writing ability was examined via a linguistic analysis of student essays. Undergraduate students (n = 108) wrote timed, prompt-based essays and completed a battery of cognitive assessments. The surface- and discourse-level linguistic features of students' essays were then analyzed using natural…
Descriptors: Cognitive Processes, Writing (Composition), Short Term Memory, Writing Ability
Loustau, Pierre; Nodenot, Thierry; Gaio, Mauro – Interactive Technology and Smart Education, 2009
Purpose: The purpose of this paper is to present a computational approach and a toolset to infer spatial displacements as they occur in route narrative documents and report on first experiments done to produce computer-aided learning (CAL) applications and instructional design editors that exploit the inferred georeferenced itineraries.…
Descriptors: Instructional Design, Semantics, Language Universals, Internet