NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 39 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jingru Zhang; James E. Pustejovsky – Society for Research on Educational Effectiveness, 2024
Background/Context: In meta-analysis examining educational intervention, characterizing heterogeneity and exploring the sources of variation in synthesized effects have become increasingly prominent areas of interest. When combining results from a collection of studies, statistical dependency among their effects size estimates will arise when a…
Descriptors: Meta Analysis, Investigations, Effect Size, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Mariola Moeyaert; Panpan Yang; Yukang Xue – Journal of Experimental Education, 2024
We have entered an era in which scientific evidence increasingly informs research practice and policy. As there is an exponential increase in the use of single-case experimental designs (SCEDs) to evaluate intervention effectiveness, there is accumulating evidence available for quantitative synthesis. Consequently, there is a growing interest in…
Descriptors: Meta Analysis, Research Design, Synthesis, Patients
Peer reviewed Peer reviewed
Direct linkDirect link
Qi, Xinyue; Zhou, Shouhao; Wang, Yucai; Peterson, Christine – Research Synthesis Methods, 2022
Meta-analysis allows researchers to combine evidence from multiple studies, making it a powerful tool for synthesizing information on the safety profiles of new medical interventions. There is a critical need to identify subgroups at high risk of experiencing treatment-related toxicities. However, this remains quite challenging from a statistical…
Descriptors: Bayesian Statistics, Identification, Meta Analysis, Data Analysis
Moeyaert, Mariola; Yang, Panpan; Xu, Xinyun; Kim, Esther – Grantee Submission, 2021
Hierarchical linear modeling (HLM) has been recommended as a meta-analytic technique for the quantitative synthesis of single-case experimental design (SCED) studies. The HLM approach is flexible and can model a variety of different SCED data complexities, such as intervention heterogeneity. A major advantage of using HLM is that participant…
Descriptors: Meta Analysis, Case Studies, Research Design, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Abdulla Alabbasi, Ahmed M.; Tadik, Harun; Acar, Selcuk; Runco, Mark A. – Creativity Research Journal, 2021
This meta-analysis examined the association of birth order and divergent thinking (DT). The main purpose was to examine how ordinal position (only, first, middle, or last-born) is related to creativity. The results from 27 studies (k= 222; N = 4,690) were analyzed using a multilevel approach. Because some previous studies compared first- vs.…
Descriptors: Birth Order, Creative Thinking, Meta Analysis, Creativity
Moeyaert, Mariola; Yang, Panpan – Grantee Submission, 2021
This study introduces an innovative meta-analytic approach, two-stage multilevel meta-analysis that considers the hierarchical structure of single-case experimental design (SCED) data. This approach is unique as it is suitable to include moderators at the intervention level, participant level, and study level, and is therefore especially…
Descriptors: Hierarchical Linear Modeling, Meta Analysis, Research Design, Case Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Ashraf, Bilal; Singh, Akansha; Uwimpuhwe, Germaine; Higgins, Steven; Kasim, Adetayo – British Educational Research Journal, 2021
Meta-analysis is the synthesis of findings from research projects, which enables an estimate of the average or pooled effect across various studies. This study presents findings from the intention to treat analysis for a series of educational evaluations in England using a two-stage meta-analysis with standardised outcome data and individual…
Descriptors: Student Characteristics, Meta Analysis, Intervention, Program Effectiveness
Peer reviewed Peer reviewed
Direct linkDirect link
Baek, Eunkyeng; Luo, Wen; Henri, Maria – Journal of Experimental Education, 2022
It is common to include multiple dependent variables (DVs) in single-case experimental design (SCED) meta-analyses. However, statistical issues associated with multiple DVs in the multilevel modeling approach (i.e., possible dependency of error, heterogeneous treatment effects, and heterogeneous error structures) have not been fully investigated.…
Descriptors: Meta Analysis, Hierarchical Linear Modeling, Comparative Analysis, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Xin Victoria; Cole, Bernard; Bonetti, Marco; Gelber, Richard D. – Research Synthesis Methods, 2018
We recently developed a method called Meta-STEPP based on the fixed-effects meta-analytic approach to explore treatment effect heterogeneity across a continuous covariate for individual time-to-event data arising from multiple clinical trials. Meta-STEPP forms overlapping subpopulation windows (meta-windows) along a continuous covariate of…
Descriptors: Meta Analysis, Outcomes of Treatment, Statistical Analysis, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Asaro-Saddler, Kristie; Moeyaert, Mariola; Xu, Xinyun; Yerden, Xiaoyi – Exceptionality, 2021
In this study, we conducted a multilevel meta-analysis to determine whether the self-regulated strategy development (SRSD) approach to teaching writing to students with autism spectrum disorder (ASD) improves significantly the number of words written and overall quality of writing, whether the effects of SRSD were consistent or variable across…
Descriptors: Hierarchical Linear Modeling, Meta Analysis, Instructional Effectiveness, Self Control
Jamshidi, Laleh; Declercq, Lies; Fernández-Castilla, Belén; Ferron, John M.; Moeyaert, Mariola; Beretvas, S. Natasha; Van den Noortgate, Wim – Grantee Submission, 2020
The focus of the current study is on handling the dependence among multiple regression coefficients representing the treatment effects when meta-analyzing data from single-case experimental studies. We compare the results when applying three different multilevel meta-analytic models (i.e., a univariate multilevel model avoiding the dependence, a…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Meta Analysis, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Papadimitropoulou, Katerina; Stijnen, Theo; Dekkers, Olaf M.; le Cessie, Saskia – Research Synthesis Methods, 2019
The vast majority of meta-analyses uses summary/aggregate data retrieved from published studies in contrast to meta-analysis of individual participant data (IPD). When the outcome is continuous and IPD are available, linear mixed modelling methods can be employed in a one-stage approach. This allows for flexible modelling of within-study…
Descriptors: Meta Analysis, Outcome Measures, Hierarchical Linear Modeling, Sample Size
Moeyaert, Mariola – Behavioral Disorders, 2019
Multilevel meta-analysis is an innovative synthesis technique used for the quantitative integration of effect size estimates across participants and across studies. The quantitative summary allows for objective, evidence-based, and informed decisions in research, practice, and policy. Based on previous methodological work, the technique results in…
Descriptors: Meta Analysis, Evidence, Correlation, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Zhao, Hong; Hodges, James S.; Carlin, Bradley P. – Research Synthesis Methods, 2017
Network meta-analysis (NMA) combines direct and indirect evidence comparing more than 2 treatments. Inconsistency arises when these 2 information sources differ. Previous work focuses on inconsistency detection, but little has been done on how to proceed after identifying inconsistency. The key issue is whether inconsistency changes an NMA's…
Descriptors: Meta Analysis, Networks, Hierarchical Linear Modeling, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Moeyaert, Mariola; Ugille, Maaike; Natasha Beretvas, S.; Ferron, John; Bunuan, Rommel; Van den Noortgate, Wim – International Journal of Social Research Methodology, 2017
This study investigates three methods to handle dependency among effect size estimates in meta-analysis arising from studies reporting multiple outcome measures taken on the same sample. The three-level approach is compared with the method of robust variance estimation, and with averaging effects within studies. A simulation study is performed,…
Descriptors: Meta Analysis, Effect Size, Robustness (Statistics), Hierarchical Linear Modeling
Previous Page | Next Page »
Pages: 1  |  2  |  3