NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Showing 1 to 15 of 511 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tenzin Doleck; Pedram Agand; Dylan Pirrotta – Education and Information Technologies, 2025
As is rapidly becoming clear, data science increasingly permeates many aspects of life. Educational research recognizes the importance and complexity of learning data science. In line with this imperative, there is a growing need to investigate the factors that influence student performance in data science tasks. In this paper, we aimed to apply…
Descriptors: Prediction, Data Science, Performance, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Hayat Sahlaoui; El Arbi Abdellaoui Alaoui; Said Agoujil; Anand Nayyar – Education and Information Technologies, 2024
Predicting student performance using educational data is a significant area of machine learning research. However, class imbalance in datasets and the challenge of developing interpretable models can hinder accuracy. This study compares different variations of the Synthetic Minority Oversampling Technique (SMOTE) combined with classification…
Descriptors: Sampling, Classification, Algorithms, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yikai Lu; Lingbo Tong; Ying Cheng – Journal of Educational Data Mining, 2024
Knowledge tracing aims to model and predict students' knowledge states during learning activities. Traditional methods like Bayesian Knowledge Tracing (BKT) and logistic regression have limitations in granularity and performance, while deep knowledge tracing (DKT) models often suffer from lacking transparency. This paper proposes a…
Descriptors: Models, Intelligent Tutoring Systems, Prediction, Knowledge Level
Peer reviewed Peer reviewed
Direct linkDirect link
Seth Elkin-Frankston; James McIntyre; Tad T. Brunyé; Aaron L. Gardony; Clifford L. Hancock; Meghan P. O'Donovan; Victoria G. Bode; Eric L. Miller – Cognitive Research: Principles and Implications, 2025
Existing toolkits for analyzing movement dynamics in animal ecology primarily focus on individual or group behavior in habitats without predefined boundaries, while methods for studying human activity often cater to bounded environments, such as team sports played on defined fields. This leaves a gap in tools for modeling and analyzing human group…
Descriptors: Group Dynamics, Military Personnel, Measures (Individuals), Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Majdi Beseiso – TechTrends: Linking Research and Practice to Improve Learning, 2025
Predicting students' success is crucial in educational settings to improve academic performance and prevent dropouts. This study aimed to improve student performance prediction by combining advanced machine learning (ML) approaches. Convolutional Neural Networks (CNNs) and attention mechanisms were used for extracting relevant features from…
Descriptors: Prediction, Success, Academic Achievement, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Anthony S. DiStefano; Joshua S. Yang – Field Methods, 2024
Despite recent methodological advances in saturation, guidelines for its estimation in more complex research designs--such as ethnographic studies--have been lacking. We present an accessible, step-by-step approach to empirical assessment of data saturation, tested on a moderately sized ethnographic study with 109 combined direct observations and…
Descriptors: Sample Size, Ethnography, Research Methodology, Research Design
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Narjes Rohani; Behnam Rohani; Areti Manataki – Journal of Educational Data Mining, 2024
The prediction of student performance and the analysis of students' learning behaviour play an important role in enhancing online courses. By analysing a massive amount of clickstream data that captures student behaviour, educators can gain valuable insights into the factors that influence students' academic outcomes and identify areas of…
Descriptors: Mathematics Education, Models, Prediction, Knowledge Level
Peer reviewed Peer reviewed
Direct linkDirect link
Batool, Saba; Rashid, Junaid; Nisar, Muhammad Wasif; Kim, Jungeun; Kwon, Hyuk-Yoon; Hussain, Amir – Education and Information Technologies, 2023
Educational data mining is an emerging interdisciplinary research area involving both education and informatics. It has become an imperative research area due to many advantages that educational institutions can achieve. Along these lines, various data mining techniques have been used to improve learning outcomes by exploring large-scale data that…
Descriptors: Academic Achievement, Prediction, Data Use, Information Retrieval
Peer reviewed Peer reviewed
Direct linkDirect link
Basnet, Ram B.; Johnson, Clayton; Doleck, Tenzin – Education and Information Technologies, 2022
The nature of teaching and learning has evolved over the years, especially as technology has evolved. Innovative application of educational analytics has gained momentum. Indeed, predictive analytics have become increasingly salient in education. Considering the prevalence of learner-system interaction data and the potential value of such data, it…
Descriptors: Prediction, Dropouts, Predictive Measurement, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan Hsiao; Lee Fiorio; Jonathan Wakefield; Emilio Zagheni – Sociological Methods & Research, 2024
Obtaining reliable and timely estimates of migration flows is critical for advancing the migration theory and guiding policy decisions, but it remains a challenge. Digital data provide granular information on time and space, but do not draw from representative samples of the population, leading to biased estimates. We propose a method for…
Descriptors: Migration, Migration Patterns, Data Collection, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Frank Lee; Alex Algarra – Information Systems Education Journal, 2025
This case study examines employee attrition, its detrimental effects on businesses, and the potential of data analytics to address this challenge. By employing Latent Dirichlet Allocation (LDA), a sophisticated NLP technique, we delve into the underlying reasons for employee departures. Additionally, we explore using RapidMiner to develop…
Descriptors: Labor Turnover, Data Analysis, Natural Language Processing, Employees
Peer reviewed Peer reviewed
Direct linkDirect link
Yu-Jie Wang; Chang-Lei Gao; Xin-Dong Ye – Education and Information Technologies, 2024
The continuous development of Educational Data Mining (EDM) and Learning Analytics (LA) technologies has provided more effective technical support for accurate early warning and interventions for student academic performance. However, the existing body of research on EDM and LA needs more empirical studies that provide feedback interventions, and…
Descriptors: Precision Teaching, Data Use, Intervention, Educational Improvement
Peer reviewed Peer reviewed
Direct linkDirect link
Mahmoud Abdasalam; Ahmad Alzubi; Kolawole Iyiola – Education and Information Technologies, 2025
This study introduces an optimized ensemble deep neural network (Optimized Ensemble Deep-NN) to enhance the accuracy of predicting student grades. This model solves the problem of different and complicated student performance data by using deep neural networks, ensemble learning, and a number of optimization algorithms, such as Adam, SGD, and RMS…
Descriptors: Grades (Scholastic), Prediction, Accuracy, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Shoaib, Muhammad; Sayed, Nasir; Amara, Nedra; Latif, Abdul; Azam, Sikandar; Muhammad, Sajjad – Education and Information Technologies, 2022
Technology and data analysis have evolved into a resource-rich tool for collecting, researching and comparing student achievement levels in the classroom. There are sufficient resources to discover student success through data analysis by routinely collecting extensive data on student behaviour and curriculum structure. Educational Data Mining…
Descriptors: Prediction, Artificial Intelligence, Student Behavior, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Meylan, Stephan C.; Griffiths, Thomas L. – Cognitive Science, 2021
Language research has come to rely heavily on large-scale, web-based datasets. These datasets can present significant methodological challenges, requiring researchers to make a number of decisions about how they are collected, represented, and analyzed. These decisions often concern long-standing challenges in corpus-based language research,…
Descriptors: Data Analysis, Data Collection, Word Frequency, Prediction
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  35