Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 12 |
Descriptor
Source
Author
Adrienne D. Woods | 1 |
Baek, Eunkyeng | 1 |
Bash, Kirstie L. | 1 |
Ben Van Dusen | 1 |
Benjamin Kelcey | 1 |
Brian Keller | 1 |
Chang, Wanchen | 1 |
Chen, Siqi | 1 |
Craig Enders | 1 |
Dung Pham | 1 |
Egamaria Alacam | 1 |
More ▼ |
Publication Type
Reports - Research | 12 |
Journal Articles | 10 |
Information Analyses | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
Early Childhood Education | 1 |
Elementary Education | 1 |
Grade 1 | 1 |
High Schools | 1 |
Primary Education | 1 |
Secondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Wei Li; Yanli Xie; Dung Pham; Nianbo Dong; Jessaca Spybrook; Benjamin Kelcey – Asia Pacific Education Review, 2024
Cluster randomized trials (CRTs) are commonly used to evaluate the causal effects of educational interventions, where the entire clusters (e.g., schools) are randomly assigned to treatment or control conditions. This study introduces statistical methods for designing and analyzing two-level (e.g., students nested within schools) and three-level…
Descriptors: Research Design, Multivariate Analysis, Randomized Controlled Trials, Hierarchical Linear Modeling
Han Du; Brian Keller; Egamaria Alacam; Craig Enders – Grantee Submission, 2023
In Bayesian statistics, the most widely used criteria of Bayesian model assessment and comparison are Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC). A multilevel mediation model is used as an illustrative example to compare different types of DIC and WAIC. More specifically, the study compares the…
Descriptors: Bayesian Statistics, Models, Comparative Analysis, Probability
Ben Van Dusen; Heidi Cian; Jayson Nissen; Lucy Arellano; Adrienne D. Woods – Sociology of Education, 2024
This investigation examines the efficacy of multilevel analysis of individual heterogeneity and discriminatory accuracy (MAIHDA) over fixed-effects models when performing intersectional studies. The research questions are as follows: (1) What are typical strata representation rates and outcomes on physics research-based assessments? (2) To what…
Descriptors: Educational Research, Intersectionality, Critical Race Theory, STEM Education
Jia, Yuane; Konold, Timothy – Journal of Experimental Education, 2021
Traditional observed variable multilevel models for evaluating indirect effects are limited by their inability to quantify measurement and sampling error. They are further restricted by being unable to fully separate within- and between-level effects without bias. Doubly latent models reduce these biases by decomposing the observed within-level…
Descriptors: Hierarchical Linear Modeling, Educational Environment, Aggression, Bullying
Luo, Wen; Li, Haoran; Baek, Eunkyeng; Chen, Siqi; Lam, Kwok Hap; Semma, Brandie – Review of Educational Research, 2021
Multilevel modeling (MLM) is a statistical technique for analyzing clustered data. Despite its long history, the technique and accompanying computer programs are rapidly evolving. Given the complexity of multilevel models, it is crucial for researchers to provide complete and transparent descriptions of the data, statistical analyses, and results.…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Prediction, Research Problems
Chang, Wanchen; Pituch, Keenan A. – Journal of Experimental Education, 2019
When data for multiple outcomes are collected in a multilevel design, researchers can select a univariate or multivariate analysis to examine group-mean differences. When correlated outcomes are incomplete, a multivariate multilevel model (MVMM) may provide greater power than univariate multilevel models (MLMs). For a two-group multilevel design…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Research Problems, Error of Measurement
Bash, Kirstie L.; Howell Smith, Michelle C.; Trantham, Pam S. – Journal of Mixed Methods Research, 2021
The use of advanced quantitative methods within mixed methods research has been investigated in a limited capacity. In particular, hierarchical linear models are a popular approach to account for multilevel data, such as students within schools, but its use and value as the quantitative strand in a mixed methods study remains unknown. This article…
Descriptors: Hierarchical Linear Modeling, Mixed Methods Research, Research Design, Statistical Analysis
McNeish, Daniel – Journal of Experimental Education, 2018
Small samples are common in growth models due to financial and logistical difficulties of following people longitudinally. For similar reasons, longitudinal studies often contain missing data. Though full information maximum likelihood (FIML) is popular to accommodate missing data, the limited number of studies in this area have found that FIML…
Descriptors: Growth Models, Sampling, Sample Size, Hierarchical Linear Modeling
Stapleton, Laura M.; McNeish, Daniel M.; Yang, Ji Seung – Educational Psychologist, 2016
Multilevel models are often used to evaluate hypotheses about relations among constructs when data are nested within clusters (Raudenbush & Bryk, 2002), although alternative approaches are available when analyzing nested data (Binder & Roberts, 2003; Sterba, 2009). The overarching goal of this article is to suggest when it is appropriate…
Descriptors: Hierarchical Linear Modeling, Data Analysis, Statistical Data, Multivariate Analysis
Lai, Mark H. C.; Kwok, Oi-man – Journal of Experimental Education, 2015
Educational researchers commonly use the rule of thumb of "design effect smaller than 2" as the justification of not accounting for the multilevel or clustered structure in their data. The rule, however, has not yet been systematically studied in previous research. In the present study, we generated data from three different models…
Descriptors: Educational Research, Research Design, Cluster Grouping, Statistical Data
May, Henry – Society for Research on Educational Effectiveness, 2014
Interest in variation in program impacts--How big is it? What might explain it?--has inspired recent work on the analysis of data from multi-site experiments. One critical aspect of this problem involves the use of random or fixed effect estimates to visualize the distribution of impact estimates across a sample of sites. Unfortunately, unless the…
Descriptors: Educational Research, Program Effectiveness, Research Problems, Computation
Martin, Andrew J.; Wilson, Rachel; Liem, Gregory Arief D.; Ginns, Paul – Journal of Higher Education, 2014
In the context of "academic momentum," a longitudinal study of university students (N = 904) showed high school achievement and ongoing university achievement predicted subsequent achievement through university. However, the impact of high school achievement diminished, while additive effects of ongoing university achievement continued.…
Descriptors: Foreign Countries, College Students, Longitudinal Studies, Academic Achievement