NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 44 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Nesra Yannier; Scott E. Hudson; Henry Chang; Kenneth R. Koedinger – International Journal of Artificial Intelligence in Education, 2024
Adaptivity in advanced learning technologies offer the possibility to adapt to different student backgrounds, which is difficult to do in a traditional classroom setting. However, there are mixed results on the effectiveness of adaptivity based on different implementations and contexts. In this paper, we introduce AI adaptivity in the context of a…
Descriptors: Artificial Intelligence, Computer Software, Feedback (Response), Outcomes of Education
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Liang-Yi; Huang, Wen-Lung – Educational Technology & Society, 2023
With the increasing bandwidth, videos have been gradually used as submissions for online peer assessment activities. However, their transient nature imposes a high cognitive load on students, particularly lowability students. Therefore, reviewers' ability is a key factor that may affect the reviewing process and performance in an online video peer…
Descriptors: Peer Evaluation, Undergraduate Students, Video Technology, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Sudeshna Pal; Patsy Moskal; Anchalee Ngampornchai – International Journal on E-Learning, 2024
This study investigated the effectiveness of blended instruction in enhancing student success in an advanced undergraduate engineering course. The research used learning analytics captured from pre-recorded lecture videos, course grade data, and student surveys. Results revealed positive correlations between lecture video viewership and course…
Descriptors: Blended Learning, Advanced Courses, Engineering Education, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Tang, Hengtao – Educational Technology Research and Development, 2021
Learning in Massive Open Online Courses (MOOCs) requires learners to self-regulate their learning process or receive effective self-regulated learning (SRL) interventions to accomplish personal goals. Much attention has thus been paid to how SRL influences learner performance in MOOCs, but research has overlooked a person-centered analysis of how…
Descriptors: Online Courses, Self Management, Learning Strategies, Students
Peer reviewed Peer reviewed
Direct linkDirect link
Zi Xiang Poh; Ean Teng Khor – International Journal on E-Learning, 2024
Machine learning and data mining techniques have been widely used in educational settings to identify the important features that tend to influence students' learning performance and predict their future performance. However, there is little to no research done in the context of Singapore's education. Hence, this study aims to fill the gap by…
Descriptors: Learning Analytics, Goodness of Fit, Academic Achievement, Online Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Hellings, Jan; Haelermans, Carla – Higher Education: The International Journal of Higher Education Research, 2022
We use a randomised experiment to study the effect of offering half of 556 freshman students a learning analytics dashboard and a weekly email with a link to their dashboard, on student behaviour in the online environment and final exam performance. The dashboard shows their online progress in the learning management systems, their predicted…
Descriptors: Learning Analytics, College Freshmen, Student Behavior, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Esnaashari, Shadi; Gardner, Lesley A.; Arthanari, Tiru S.; Rehm, Michael – Journal of Computer Assisted Learning, 2023
Background: It is vital to understand students' Self-Regulatory Learning (SRL) processes, especially in Blended Learning (BL), when students need to be more autonomous in their learning process. In studying SRL, most researchers have followed a variable-oriented approach. Moreover, little has been known about the unfolding process of students' SRL…
Descriptors: Metacognition, Student Attitudes, Learning Strategies, Questionnaires
Peer reviewed Peer reviewed
Direct linkDirect link
Yuanlan Jiang; Jian-E Peng – Computer Assisted Language Learning, 2025
Language learner engagement, which is receiving increased attention, has predominantly focused on offline classroom contexts, while learner engagement in language Massive Open Online Courses (LMOOCs) remains under-explored. This study was conducted on a College English MOOC with the purpose of examining learner engagement and its relations with…
Descriptors: Learner Engagement, Personal Autonomy, Second Language Learning, Second Language Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wang, Han; Huang, Tao; Tian, Jun; Yang, Huali; Han, Pengdong – Best Evidence in Chinese Education, 2022
In the age of Internet Plus, the deep integration of information technology into education and individualized instruction have become a growing trend in education development. Self-regulated learning is a key element of student core competence, but easy to be overlooked in basic education. The purpose of this study is to establish the data…
Descriptors: Elementary School Students, Scaffolding (Teaching Technique), Learning Strategies, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chenglong Wang – Turkish Online Journal of Educational Technology - TOJET, 2024
The rapid development of education informatization has accumulated a large amount of data for learning analytics, and adopting educational data mining to find new patterns of data, develop new algorithms and models, and apply known predictive models to the teaching system to improve learning is the challenge and vision of the education field in…
Descriptors: Decision Making, Prediction, Models, Intervention
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cam, Emre; Ozdag, Muhammet Esat – Malaysian Online Journal of Educational Technology, 2021
This study aims at finding out students' course success in vocational courses of computer and instructional technologies department by means of machine learning algorithms. In the scope of the study, a dataset was formed with demographic information and exam scores obtained from the students studying in the Department of Computer Education and…
Descriptors: Artificial Intelligence, Academic Achievement, Mathematics, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Jeff Ford; Rachel Erickson; Ha Le; Kaylee Vick; Jillian Downey – PRIMUS, 2024
In this study, we analyzed student participation and success in a college-level Calculus I course that utilized standards-based grading. By measuring the level to which students participate in this class structure, we were able to use a clustering algorithm that revealed multiple groupings of students that were distinct based on activity…
Descriptors: Calculus, Mathematics Instruction, Mathematics Achievement, Grades (Scholastic)
Peer reviewed Peer reviewed
Direct linkDirect link
Mark Locherer – Cogent Education, 2024
In this article, we outline the process undertaken to establish and evaluate a mathematics centre at the Ravensburg-Weingarten University of Applied Sciences. Firstly, we outline some of the current research into centre evaluation. Secondly, we give a brief overview of our centre, including details on staffing, teaching format, goals, etc.…
Descriptors: Universities, Mathematics Education, Teaching Methods, Program Evaluation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xu, Yinuo; Pardos, Zachary A. – International Educational Data Mining Society, 2023
In studies that generate course recommendations based on similarity, the typical enrollment data used for model training consists only of one record per student-course pair. In this study, we explore and quantify the additional signal present in course transaction data, which includes a more granular account of student administrative interactions…
Descriptors: Semantics, Enrollment Trends, Learning Analytics, STEM Education
Peer reviewed Peer reviewed
Direct linkDirect link
Pei, Bo; Xing, Wanli – Journal of Educational Computing Research, 2022
This paper introduces a novel approach to identify at-risk students with a focus on output interpretability through analyzing learning activities at a finer granularity on a weekly basis. Specifically, this approach converts the predicted output from the former weeks into meaningful probabilities to infer the predictions in the current week for…
Descriptors: At Risk Students, Learning Analytics, Information Retrieval, Models
Previous Page | Next Page »
Pages: 1  |  2  |  3