Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 11 |
Since 2016 (last 10 years) | 22 |
Since 2006 (last 20 years) | 26 |
Descriptor
Automation | 27 |
Natural Language Processing | 27 |
Artificial Intelligence | 11 |
Essays | 7 |
Models | 7 |
Accuracy | 6 |
Classification | 6 |
Scoring | 6 |
Computer Assisted Testing | 4 |
Computer Uses in Education | 4 |
Documentation | 4 |
More ▼ |
Source
Grantee Submission | 15 |
International Educational… | 7 |
International Association for… | 1 |
International Society for… | 1 |
International Working Group… | 1 |
Proceedings of the ASIS… | 1 |
Research-publishing.net | 1 |
Author
Publication Type
Speeches/Meeting Papers | 27 |
Reports - Research | 21 |
Reports - Descriptive | 3 |
Reports - Evaluative | 2 |
Journal Articles | 1 |
Education Level
Higher Education | 7 |
Postsecondary Education | 6 |
Secondary Education | 4 |
High Schools | 3 |
Junior High Schools | 2 |
Middle Schools | 2 |
Audience
Location
Arizona (Phoenix) | 2 |
Brazil | 1 |
Utah | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Gates MacGinitie Reading Tests | 1 |
Writing Apprehension Test | 1 |
What Works Clearinghouse Rating
Andreea Dutulescu; Stefan Ruseti; Denis Iorga; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
The process of generating challenging and appropriate distractors for multiple-choice questions is a complex and time-consuming task. Existing methods for an automated generation have limitations in proposing challenging distractors, or they fail to effectively filter out incorrect choices that closely resemble the correct answer, share synonymous…
Descriptors: Multiple Choice Tests, Artificial Intelligence, Attention, Natural Language Processing
Sami Baral; Eamon Worden; Wen-Chiang Lim; Zhuang Luo; Christopher Santorelli; Ashish Gurung; Neil Heffernan – Grantee Submission, 2024
The effectiveness of feedback in enhancing learning outcomes is well documented within Educational Data Mining (EDM). Various prior research have explored methodologies to enhance the effectiveness of feedback to students in various ways. Recent developments in Large Language Models (LLMs) have extended their utility in enhancing automated…
Descriptors: Automation, Scoring, Computer Assisted Testing, Natural Language Processing
Condor, Aubrey; Litster, Max; Pardos, Zachary – International Educational Data Mining Society, 2021
We explore how different components of an Automatic Short Answer Grading (ASAG) model affect the model's ability to generalize to questions outside of those used for training. For supervised automatic grading models, human ratings are primarily used as ground truth labels. Producing such ratings can be resource heavy, as subject matter experts…
Descriptors: Automation, Grading, Test Items, Generalization
Sabnis, Varun; Abhinav, Kumar; Subramanian, Venkatesh; Dubey, Alpana; Bhat, Padmaraj – International Educational Data Mining Society, 2021
Today, there is a vast amount of online material for learners. However, due to the lack of prerequisite information needed to master them, a lot of time is spent in identifying the right learning content for mastering these concepts. A system that captures underlying prerequisites needed for learning different concepts can help improve the quality…
Descriptors: Prerequisites, Fundamental Concepts, Automation, Natural Language Processing
David W. Brown; Dean Jensen – International Society for Technology, Education, and Science, 2023
The growth of Artificial Intelligence (AI) chatbots has created a great deal of discussion in the education community. While many have gravitated towards the ability of these bots to make learning more interactive, others have grave concerns that student created essays, long used as a means of assessing the subject comprehension of students, may…
Descriptors: Artificial Intelligence, Natural Language Processing, Computer Software, Writing (Composition)
Wan, Qian; Crossley, Scott; Banawan, Michelle; Balyan, Renu; Tian, Yu; McNamara, Danielle; Allen, Laura – International Educational Data Mining Society, 2021
The current study explores the ability to predict argumentative claims in structurally-annotated student essays to gain insights into the role of argumentation structure in the quality of persuasive writing. Our annotation scheme specified six types of argumentative components based on the well-established Toulmin's model of argumentation. We…
Descriptors: Essays, Persuasive Discourse, Automation, Identification
Botarleanu, Robert-Mihai; Dascalu, Mihai; Allen, Laura K.; Crossley, Scott Andrew; McNamara, Danielle S. – Grantee Submission, 2022
Automated scoring of student language is a complex task that requires systems to emulate complex and multi-faceted human evaluation criteria. Summary scoring brings an additional layer of complexity to automated scoring because it involves two texts of differing lengths that must be compared. In this study, we present our approach to automate…
Descriptors: Automation, Scoring, Documentation, Likert Scales
Saira Anwar; Ahmed Ashraf Butt; Muhsin Menekse – Grantee Submission, 2023
This study explored the effectiveness of scaffolding in students' reflection writing process. We compared two sections of an introductory computer programming course (N=188). In Section 1, students did not receive any scaffolding while generating reflections, whereas in Section 2, students were scaffolded during the reflection writing process.…
Descriptors: Scaffolding (Teaching Technique), Writing Instruction, Writing Processes, Writing (Composition)
Wan, Qian; Crossley, Scott; Allen, Laura; McNamara, Danielle – Grantee Submission, 2020
In this paper, we extracted content-based and structure-based features of text to predict human annotations for claims and nonclaims in argumentative essays. We compared Logistic Regression, Bernoulli Naive Bayes, Gaussian Naive Bayes, Linear Support Vector Classification, Random Forest, and Neural Networks to train classification models. Random…
Descriptors: Persuasive Discourse, Essays, Writing Evaluation, Natural Language Processing
Crossley, Scott A.; Kim, Minkyung; Allen, Laura K.; McNamara, Danielle S. – Grantee Submission, 2019
Summarization is an effective strategy to promote and enhance learning and deep comprehension of texts. However, summarization is seldom implemented by teachers in classrooms because the manual evaluation of students' summaries requires time and effort. This problem has led to the development of automated models of summarization quality. However,…
Descriptors: Automation, Writing Evaluation, Natural Language Processing, Artificial Intelligence
Nicula, Bogdan; Perret, Cecile A.; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2020
Theories of discourse argue that comprehension depends on the coherence of the learner's mental representation. Our aim is to create a reliable automated representation to estimate readers' level of comprehension based on different productions, namely self-explanations and answers to open-ended questions. Previous work relied on Cohesion Network…
Descriptors: Network Analysis, Reading Comprehension, Automation, Artificial Intelligence
Jia, Qinjin; Cui, Jialin; Xiao, Yunkai; Liu, Chengyuan; Rashid, Parvez; Gehringer, Edward – International Educational Data Mining Society, 2021
Peer assessment has been widely applied across diverse academic fields over the last few decades, and has demonstrated its effectiveness. However, the advantages of peer assessment can only be achieved with high-quality peer reviews. Previous studies have found that high-quality review comments usually comprise several features (e.g., contain…
Descriptors: Peer Evaluation, Models, Artificial Intelligence, Evaluation Methods
Botarleanu, Robert-Mihai; Dascalu, Mihai; Crossley, Scott Andrew; McNamara, Danielle S. – Grantee Submission, 2020
A key writing skill is the capability to clearly convey desired meaning using available linguistic knowledge. Consequently, writers must select from a large array of idioms, vocabulary terms that are semantically equivalent, and discourse features that simultaneously reflect content and allow readers to grasp meaning. In many cases, a simplified…
Descriptors: Natural Language Processing, Writing Skills, Difficulty Level, Reading Comprehension
McCarthy, Kathryn S.; Allen, Laura K.; Hinze, Scott R. – Grantee Submission, 2020
Open-ended "constructed responses" promote deeper processing of course materials. Further, evaluation of these explanations can yield important information about students' cognition. This study examined how students' constructed responses, generated at different points during learning, relate to their later comprehension outcomes.…
Descriptors: Reading Comprehension, Prediction, Responses, College Students
Lu, Chang; Cutumisu, Maria – International Educational Data Mining Society, 2021
Digitalization and automation of test administration, score reporting, and feedback provision have the potential to benefit large-scale and formative assessments. Many studies on automated essay scoring (AES) and feedback generation systems were published in the last decade, but few connected AES and feedback generation within a unified framework.…
Descriptors: Learning Processes, Automation, Computer Assisted Testing, Scoring
Previous Page | Next Page ยป
Pages: 1 | 2