NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Type
Speeches/Meeting Papers27
Reports - Research23
Reports - Descriptive3
Reports - Evaluative1
Audience
Laws, Policies, & Programs
Assessments and Surveys
Flesch Kincaid Grade Level…1
What Works Clearinghouse Rating
Showing 1 to 15 of 27 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shimmei, Machi; Matsuda, Noboru – International Educational Data Mining Society, 2023
We propose an innovative, effective, and data-agnostic method to train a deep-neural network model with an extremely small training dataset, called VELR (Voting-based Ensemble Learning with Rejection). In educational research and practice, providing valid labels for a sufficient amount of data to be used for supervised learning can be very costly…
Descriptors: Artificial Intelligence, Training, Natural Language Processing, Educational Research
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ryusei Munemura; Fumiya Okubo; Tsubasa Minematsu; Yuta Taniguchi; Atsushi Shimada – International Association for Development of the Information Society, 2024
Course planning is essential for academic success and the achievement of personal goals. Although universities provide course syllabi and curriculum maps for course planning, integrating and understanding these resources by the learners themselves for effective course planning is time-consuming and difficult. To address this issue, this study…
Descriptors: Curriculum Development, Artificial Intelligence, Natural Language Processing, Technology Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Condor, Aubrey; Litster, Max; Pardos, Zachary – International Educational Data Mining Society, 2021
We explore how different components of an Automatic Short Answer Grading (ASAG) model affect the model's ability to generalize to questions outside of those used for training. For supervised automatic grading models, human ratings are primarily used as ground truth labels. Producing such ratings can be resource heavy, as subject matter experts…
Descriptors: Automation, Grading, Test Items, Generalization
Jia Tracy Shen; Michiharu Yamashita; Ethan Prihar; Neil Heffernan; Xintao Wu; Sean McGrew; Dongwon Lee – Grantee Submission, 2021
Educational content labeled with proper knowledge components (KCs) are particularly useful to teachers or content organizers. However, manually labeling educational content is labor intensive and error-prone. To address this challenge, prior research proposed machine learning based solutions to auto-label educational content with limited success.…
Descriptors: Mathematics Education, Knowledge Level, Video Technology, Educational Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wan, Qian; Crossley, Scott; Allen, Laura; McNamara, Danielle – Grantee Submission, 2020
In this paper, we extracted content-based and structure-based features of text to predict human annotations for claims and nonclaims in argumentative essays. We compared Logistic Regression, Bernoulli Naive Bayes, Gaussian Naive Bayes, Linear Support Vector Classification, Random Forest, and Neural Networks to train classification models. Random…
Descriptors: Persuasive Discourse, Essays, Writing Evaluation, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xiao, Yunkai; Zingle, Gabriel; Jia, Qinjin; Akbar, Shoaib; Song, Yang; Dong, Muyao; Qi, Li; Gehringer, Edward – International Educational Data Mining Society, 2020
Peer assessment adds value when students provide "helpful" feedback to their peers. But, this begs the question of how we determine "helpfulness." One important aspect is whether the review detects problems in the submitted work. To recognize problem detection, researchers have employed NLP and machine-learning text…
Descriptors: Peer Evaluation, Problems, Identification, Natural Language Processing
Crossley, Scott A.; Kim, Minkyung; Allen, Laura K.; McNamara, Danielle S. – Grantee Submission, 2019
Summarization is an effective strategy to promote and enhance learning and deep comprehension of texts. However, summarization is seldom implemented by teachers in classrooms because the manual evaluation of students' summaries requires time and effort. This problem has led to the development of automated models of summarization quality. However,…
Descriptors: Automation, Writing Evaluation, Natural Language Processing, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jiménez, Haydée G.; Casanova, Marco A.; Finamore, Anna Carolina; Simões, Gonçalo – International Educational Data Mining Society, 2021
Sentiment Analysis is a field of Natural Language Processing which aims at classifying the author's sentiment in text. This paper first describes a sentiment analysis model for students' comments about professor performance. The model achieved impressive results for comments collected from student surveys conducted at a private university in…
Descriptors: Natural Language Processing, Data Analysis, Classification, Student Surveys
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fonseca, Samuel C.; Pereira, Filipe Dwan; Oliveira, Elaine H. T.; Oliveira, David B. F.; Carvalho, Leandro S. G.; Cristea, Alexandra I. – International Educational Data Mining Society, 2020
As programming must be learned by doing, introductory programming course learners need to solve many problems, e.g., on systems such as 'Online Judges'. However, as such courses are often compulsory for non-Computer Science (nonCS) undergraduates, this may cause difficulties to learners that do not have the typical intrinsic motivation for…
Descriptors: Programming, Introductory Courses, Computer Science Education, Automation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pugh, Samuel L.; Subburaj, Shree Krishna; Rao, Arjun Ramesh; Stewart, Angela E. B.; Andrews-Todd, Jessica; D'Mello, Sidney K. – International Educational Data Mining Society, 2021
We investigated the feasibility of using automatic speech recognition (ASR) and natural language processing (NLP) to classify collaborative problem solving (CPS) skills from recorded speech in noisy environments. We analyzed data from 44 dyads of middle and high school students who used videoconferencing to collaboratively solve physics and math…
Descriptors: Problem Solving, Cooperation, Middle School Students, High School Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2018
While hierarchical machine learning approaches have been used to classify texts into different content areas, this approach has, to our knowledge, not been used in the automated assessment of text difficulty. This study compared the accuracy of four classification machine learning approaches (flat, one-vs-one, one-vs-all, and hierarchical) using…
Descriptors: Artificial Intelligence, Classification, Comparative Analysis, Prediction
Nicula, Bogdan; Perret, Cecile A.; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2020
Open-ended comprehension questions are a common type of assessment used to evaluate how well students understand one of multiple documents. Our aim is to use natural language processing (NLP) to infer the level and type of inferencing within readers' answers to comprehension questions using linguistic and semantic features within their responses.…
Descriptors: Natural Language Processing, Taxonomy, Responses, Semantics
Marilena Panaite; Mihai Dascalu; Amy Johnson; Renu Balyan; Jianmin Dai; Danielle S. McNamara; Stefan Trausan-Matu – Grantee Submission, 2018
Intelligent Tutoring Systems (ITSs) are aimed at promoting acquisition of knowledge and skills by providing relevant and appropriate feedback during students' practice activities. ITSs for literacy instruction commonly assess typed responses using Natural Language Processing (NLP) algorithms. One step in this direction often requires building a…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Algorithms, Decision Making
Nicula, Bogdan; Dascalu, Mihai; Newton, Natalie; Orcutt, Ellen; McNamara, Danielle S. – Grantee Submission, 2021
The ability to automatically assess the quality of paraphrases can be very useful for facilitating literacy skills and providing timely feedback to learners. Our aim is twofold: a) to automatically evaluate the quality of paraphrases across four dimensions: lexical similarity, syntactic similarity, semantic similarity and paraphrase quality, and…
Descriptors: Phrase Structure, Networks, Semantics, Feedback (Response)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Shi, Yang; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2021
As students learn how to program, both their programming code and their understanding of it evolves over time. In this work, we present a general data-driven approach, named "Temporal-ASTNN" for modeling student learning progression in open-ended programming domains. Temporal-ASTNN combines a novel neural network model based on abstract…
Descriptors: Programming, Computer Science Education, Learning Processes, Learning Analytics
Previous Page | Next Page »
Pages: 1  |  2