NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 54 results Save | Export
Batley, Prathiba Natesan; Hedges, Larry V. – Grantee Submission, 2021
Although statistical practices to evaluate intervention effects in SCEDs have gained prominence in the recent times, models are yet to incorporate and investigate all their analytic complexities. Most of these statistical models incorporate slopes and autocorrelations both of which contribute to trend in the data. The question that arises is…
Descriptors: Bayesian Statistics, Models, Accuracy, Computation
Adam C. Sales; Ethan Prihar; Johann Gagnon-Bartsch; Ashish Gurung; Neil T. Heffernan – Grantee Submission, 2022
Randomized A/B tests allow causal estimation without confounding but are often under-powered. This paper uses a new dataset, including over 250 randomized comparisons conducted in an online learning platform, to illustrate a method combining data from A/B tests with log data from users who were not in the experiment. Inference remains exact and…
Descriptors: Research Methodology, Educational Experiments, Causal Models, Computation
Custer, Michael; Kim, Jongpil – Online Submission, 2023
This study utilizes an analysis of diminishing returns to examine the relationship between sample size and item parameter estimation precision when utilizing the Masters' Partial Credit Model for polytomous items. Item data from the standardization of the Batelle Developmental Inventory, 3rd Edition were used. Each item was scored with a…
Descriptors: Sample Size, Item Response Theory, Test Items, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Zexuan Pan; Maria Cutumisu – AERA Online Paper Repository, 2023
Computational thinking (CT) is a fundamental ability for learners in today's society. Although CT assessments and interventions have been studied widely, little is known about CT predictions. This study predicted students' CT achievement in the ICILS 2018 using five machine learning models. These models were trained on the data from five European…
Descriptors: Computation, Thinking Skills, Artificial Intelligence, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Goutte, Cyril; Durand, Guillaume – International Educational Data Mining Society, 2020
Learning curves are an important tool in cognitive diagnostics modeling to help assess how well students acquire new skills, and to refine and improve knowledge component models. Learning curves are typically obtained from a model estimated on real data obtained from a finite, and usually limited, sample of students. As a consequence, there is…
Descriptors: Learning, Models, Computation, Statistical Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Moore, Russell; Caines, Andrew; Elliott, Mark; Zaidi, Ahmed; Rice, Andrew; Buttery, Paula – International Educational Data Mining Society, 2019
Educational systems use models of student skill to inform decision-making processes. Defining such models manually is challenging due to the large number of relevant factors. We propose learning multidimensional representations (embeddings) from student activity data -- these are fixed-length real vectors with three desirable characteristics:…
Descriptors: Models, Knowledge Representation, Skills, Artificial Intelligence
Copping, Kate – Mathematics Education Research Group of Australasia, 2021
The development of mathematical reasoning is a key proficiency for mathematics within the Australian Curriculum. However, reasoning can be difficult for teachers to assess, particularly with pen and paper tests. In this study, interview tasks were designed across three curriculum areas at three different levels to assess student reasoning through…
Descriptors: Foreign Countries, Mathematics Instruction, Mathematical Logic, Elementary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Jiajing; Liang, Xinya; Yang, Yanyun – AERA Online Paper Repository, 2017
In Bayesian structural equation modeling (BSEM), prior settings may affect model fit, parameter estimation, and model comparison. This simulation study was to investigate how the priors impact evaluation of relative fit across competing models. The design factors for data generation included sample sizes, factor structures, data distributions, and…
Descriptors: Bayesian Statistics, Structural Equation Models, Goodness of Fit, Sample Size
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rachatasumrit, Napol; Koedinger, Kenneth R. – International Educational Data Mining Society, 2021
Student modeling is useful in educational research and technology development due to a capability to estimate latent student attributes. Widely used approaches, such as the Additive Factors Model (AFM), have shown satisfactory results, but they can only handle binary outcomes, which may yield potential information loss. In this work, we propose a…
Descriptors: Models, Student Characteristics, Feedback (Response), Error Correction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Weitekamp, Daniel, III.; Harpstead, Erik; MacLellan, Christopher J.; Rachatasumrit, Napol; Koedinger, Kenneth R. – International Educational Data Mining Society, 2019
Computational models of learning can be powerful tools to test educational technologies, automate the authoring of instructional software, and advance theories of learning. These mechanistic models of learning, which instantiate computational theories of the learning process, are capable of making predictions about learners' performance in…
Descriptors: Computation, Models, Learning, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ou, Lu; Hofman, Abe D.; Simmering, Vanessa R.; Bechger, Timo; Maris, Gunter; van der Maas, Han L. J. – International Educational Data Mining Society, 2019
In this study, we fitted a mixed-effects nonlinear continuous-time mutualism model of skill development proposed by van der Maas et al. (2006) to naturally collected irregularly spaced time series data from an online adaptive practice system for mathematics called Math Garden. Results showed that the mutualism model provided a better fit to the…
Descriptors: Mathematics Skills, Skill Development, Time, Models
Zhou, Jianing; Bhat, Suma – Grantee Submission, 2021
Consistency of learning behaviors is known to play an important role in learners' engagement in a course and impact their learning outcomes. Despite significant advances in the area of learning analytics (LA) in measuring various self-regulated learning behaviors, using LA to measure consistency of online course engagement patterns remains largely…
Descriptors: Models, Online Courses, Learner Engagement, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Amrein-Beardsley, Audrey; Geiger, Tray – AERA Online Paper Repository, 2017
Contemporary teacher evaluation systems are built upon multiple measures including, primarily, teacher-level value-added and observational estimates. While researchers have conducted examinations of these systems and indicators, researchers have not investigated how using these systems might distort the validity of the inferences being drawn,…
Descriptors: Value Added Models, Computation, Teacher Evaluation, Accountability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Akram, Bita; Min, Wookhee; Wiebe, Eric; Mott, Bradford; Boyer, Kristy Elizabeth; Lester, James – International Educational Data Mining Society, 2018
A key affordance of game-based learning environments is their potential to unobtrusively assess student learning without interfering with gameplay. In this paper, we introduce a temporal analytics framework for stealth assessment that analyzes students' problem-solving strategies. The strategy-based temporal analytic framework uses long short-term…
Descriptors: Educational Games, Problem Solving, Educational Environment, Short Term Memory
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Durand, Guillaume; Goutte, Cyril; Léger, Serge – International Educational Data Mining Society, 2018
Knowledge tracing is a fundamental area of educational data modeling that aims at gaining a better understanding of the learning occurring in tutoring systems. Knowledge tracing models fit various parameters on observed student performance and are evaluated through several goodness of fit metrics. Fitted parameter values are of crucial interest in…
Descriptors: Error of Measurement, Models, Goodness of Fit, Predictive Validity
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4