Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 9 |
Since 2016 (last 10 years) | 22 |
Since 2006 (last 20 years) | 29 |
Descriptor
Source
Grantee Submission | 12 |
Research-publishing.net | 7 |
International Educational… | 6 |
Association Supporting… | 2 |
International Association for… | 1 |
Online Submission | 1 |
Author
McNamara, Danielle S. | 5 |
Dascalu, Mihai | 4 |
Allen, Laura K. | 2 |
Baker, Ryan S. | 2 |
Jeevan Chapagain | 2 |
Nicula, Bogdan | 2 |
Priti Oli | 2 |
Rabin Banjade | 2 |
Snyder, Robin M. | 2 |
Vasile Rus | 2 |
Al-Jarf, Reima | 1 |
More ▼ |
Publication Type
Speeches/Meeting Papers | 40 |
Reports - Research | 24 |
Reports - Descriptive | 9 |
Reports - Evaluative | 5 |
Opinion Papers | 2 |
Education Level
Higher Education | 9 |
Postsecondary Education | 9 |
Elementary Education | 3 |
Secondary Education | 2 |
Adult Education | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Location
Pennsylvania | 2 |
California | 1 |
California (Stanford) | 1 |
China | 1 |
Europe | 1 |
France | 1 |
Illinois (Chicago) | 1 |
Japan | 1 |
Saudi Arabia | 1 |
Switzerland | 1 |
Texas | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Flesch Reading Ease Formula | 1 |
Peabody Picture Vocabulary… | 1 |
What Works Clearinghouse Rating
Maria Goldshtein; Jaclyn Ocumpaugh; Andrew Potter; Rod D. Roscoe – Grantee Submission, 2024
As language technologies have become more sophisticated and prevalent, there have been increasing concerns about bias in natural language processing (NLP). Such work often focuses on the effects of bias instead of sources. In contrast, this paper discusses how normative language assumptions and ideologies influence a range of automated language…
Descriptors: Language Attitudes, Computational Linguistics, Computer Software, Natural Language Processing

Priti Oli; Rabin Banjade; Jeevan Chapagain; Vasile Rus – Grantee Submission, 2023
This paper systematically explores how Large Language Models (LLMs) generate explanations of code examples of the type used in intro-to-programming courses. As we show, the nature of code explanations generated by LLMs varies considerably based on the wording of the prompt, the target code examples being explained, the programming language, the…
Descriptors: Computational Linguistics, Programming, Computer Science Education, Programming Languages

Arun-Balajiee Lekshmi-Narayanan; Priti Oli; Jeevan Chapagain; Mohammad Hassany; Rabin Banjade; Vasile Rus – Grantee Submission, 2024
Worked examples, which present an explained code for solving typical programming problems are among the most popular types of learning content in programming classes. Most approaches and tools for presenting these examples to students are based on line-by-line explanations of the example code. However, instructors rarely have time to provide…
Descriptors: Coding, Computer Science Education, Computational Linguistics, Artificial Intelligence
Allen, Laura K.; Mills, Caitlin; Perret, Cecile; McNamara, Danielle S. – Grantee Submission, 2019
This study examines the extent to which instructions to self-explain vs. "other"-explain a text lead readers to produce different forms of explanations. Natural language processing was used to examine the content and characteristics of the explanations produced as a function of instruction condition. Undergraduate students (n = 146)…
Descriptors: Language Processing, Science Instruction, Computational Linguistics, Teaching Methods
Phung, Tung; Cambronero, José; Gulwani, Sumit; Kohn, Tobias; Majumdarm, Rupak; Singla, Adish; Soares, Gustavo – International Educational Data Mining Society, 2023
Large language models (LLMs), such as Codex, hold great promise in enhancing programming education by automatically generating feedback for students. We investigate using LLMs to generate feedback for fixing syntax errors in Python programs, a key scenario in introductory programming. More concretely, given a student's buggy program, our goal is…
Descriptors: Computational Linguistics, Feedback (Response), Programming, Computer Science Education
Botarleanu, Robert-Mihai; Dascalu, Mihai; Crossley, Scott Andrew; McNamara, Danielle S. – Grantee Submission, 2020
A key writing skill is the capability to clearly convey desired meaning using available linguistic knowledge. Consequently, writers must select from a large array of idioms, vocabulary terms that are semantically equivalent, and discourse features that simultaneously reflect content and allow readers to grasp meaning. In many cases, a simplified…
Descriptors: Natural Language Processing, Writing Skills, Difficulty Level, Reading Comprehension
Chopra, Harshita; Lin, Yiwen; Samadi, Mohammad Amin; Cavazos, Jacqueline G.; Yu, Renzhe; Jaquay, Spencer; Nixon, Nia – International Educational Data Mining Society, 2023
Exploring students' discourse in academic settings over time can provide valuable insight into the evolution of learner engagement and participation in online learning. In this study, we propose an analytical framework to capture topics and the temporal progression of learner discourse. We employed a Contextualized Topic Modeling technique on…
Descriptors: Semantics, Computer Mediated Communication, Pandemics, COVID-19
Švábenský, Valdemar; Baker, Ryan S.; Zambrano, Andrés; Zou, Yishan; Slater, Stefan – International Educational Data Mining Society, 2023
Students who take an online course, such as a MOOC, use the course's discussion forum to ask questions or reach out to instructors when encountering an issue. However, reading and responding to students' questions is difficult to scale because of the time needed to consider each message. As a result, critical issues may be left unresolved, and…
Descriptors: Generalization, Computer Mediated Communication, MOOCs, State Universities
Nicula, Bogdan; Perret, Cecile A.; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2020
Open-ended comprehension questions are a common type of assessment used to evaluate how well students understand one of multiple documents. Our aim is to use natural language processing (NLP) to infer the level and type of inferencing within readers' answers to comprehension questions using linguistic and semantic features within their responses.…
Descriptors: Natural Language Processing, Taxonomy, Responses, Semantics
Nicula, Bogdan; Dascalu, Mihai; Newton, Natalie; Orcutt, Ellen; McNamara, Danielle S. – Grantee Submission, 2021
The ability to automatically assess the quality of paraphrases can be very useful for facilitating literacy skills and providing timely feedback to learners. Our aim is twofold: a) to automatically evaluate the quality of paraphrases across four dimensions: lexical similarity, syntactic similarity, semantic similarity and paraphrase quality, and…
Descriptors: Phrase Structure, Networks, Semantics, Feedback (Response)
Ward, Monica – Research-publishing.net, 2017
The term Intelligent Computer Assisted Language Learning (ICALL) covers many different aspects of CALL that add something extra to a CALL resource. This could be with the use of computational linguistics or Artificial Intelligence (AI). ICALL tends to be not very well understood within the CALL community. There may also be the slight fear factor…
Descriptors: Artificial Intelligence, Computer Assisted Instruction, Computational Linguistics, Natural Language Processing
Cai, Zhiqiang; Siebert-Evenstone, Amanda; Eagan, Brendan; Shaffer, David Williamson; Hu, Xiangen; Graesser, Arthur C. – Grantee Submission, 2019
Coding is a process of assigning meaning to a given piece of evidence. Evidence may be found in a variety of data types, including documents, research interviews, posts from social media, conversations from learning platforms, or any source of data that may provide insights for the questions under qualitative study. In this study, we focus on text…
Descriptors: Semantics, Computational Linguistics, Evidence, Coding
Ruthe Foushee; Dan Byrne; Marisa Casillas; Susan Goldin-Meadow – Grantee Submission, 2022
Linguistic alignment--the contingent reuse of our interlocutors' language at all levels of linguistic structure--pervades human dialogue. Here, we design unique measures to capture the degree of linguistic alignment between interlocutors' linguistic representations at three levels of structure: lexical, syntactic, and semantic. We track these…
Descriptors: Semantics, Syntax, Vocabulary Skills, Models
Olney, Andrew M. – Grantee Submission, 2021
This paper explores a general approach to paraphrase generation using a pre-trained seq2seq model fine-tuned using a back-translated anatomy and physiology textbook. Human ratings indicate that the paraphrase model generally preserved meaning and grammaticality/fluency: 70% of meaning ratings were above 75, and 40% of paraphrases were considered…
Descriptors: Translation, Language Processing, Error Analysis (Language), Grammar
Stone, Cathlyn; Donnelly, Patrick J.; Dale, Meghan; Capello, Sarah; Kelly, Sean; Godley, Amanda; D'Mello, Sidney K. – International Educational Data Mining Society, 2019
We examine the ability of supervised text classification models to identify several discourse properties from teachers' speech with an eye for providing teachers with meaningful automated feedback about the quality of their classroom discourse. We collected audio recordings from 28 teachers from 10 schools in 164 authentic classroom sessions,…
Descriptors: Classification, Classroom Communication, Audio Equipment, Feedback (Response)