Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 5 |
Descriptor
Author
Jeevan Chapagain | 2 |
Priti Oli | 2 |
Rabin Banjade | 2 |
Vasile Rus | 2 |
Arun-Balajiee… | 1 |
Cambronero, José | 1 |
Ehara, Yo | 1 |
Gulwani, Sumit | 1 |
Kohn, Tobias | 1 |
Majumdarm, Rupak | 1 |
Mohammad Hassany | 1 |
More ▼ |
Publication Type
Speeches/Meeting Papers | 5 |
Reports - Research | 4 |
Reports - Evaluative | 1 |
Education Level
Elementary Education | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Higher Education | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Postsecondary Education | 1 |
Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Flesch Reading Ease Formula | 1 |
Test of English for… | 1 |
What Works Clearinghouse Rating

Priti Oli; Rabin Banjade; Jeevan Chapagain; Vasile Rus – Grantee Submission, 2023
This paper systematically explores how Large Language Models (LLMs) generate explanations of code examples of the type used in intro-to-programming courses. As we show, the nature of code explanations generated by LLMs varies considerably based on the wording of the prompt, the target code examples being explained, the programming language, the…
Descriptors: Computational Linguistics, Programming, Computer Science Education, Programming Languages

Arun-Balajiee Lekshmi-Narayanan; Priti Oli; Jeevan Chapagain; Mohammad Hassany; Rabin Banjade; Vasile Rus – Grantee Submission, 2024
Worked examples, which present an explained code for solving typical programming problems are among the most popular types of learning content in programming classes. Most approaches and tools for presenting these examples to students are based on line-by-line explanations of the example code. However, instructors rarely have time to provide…
Descriptors: Coding, Computer Science Education, Computational Linguistics, Artificial Intelligence
Phung, Tung; Cambronero, José; Gulwani, Sumit; Kohn, Tobias; Majumdarm, Rupak; Singla, Adish; Soares, Gustavo – International Educational Data Mining Society, 2023
Large language models (LLMs), such as Codex, hold great promise in enhancing programming education by automatically generating feedback for students. We investigate using LLMs to generate feedback for fixing syntax errors in Python programs, a key scenario in introductory programming. More concretely, given a student's buggy program, our goal is…
Descriptors: Computational Linguistics, Feedback (Response), Programming, Computer Science Education
Ehara, Yo – International Educational Data Mining Society, 2022
Language learners are underserved if there are unlearned meanings of a word that they think they have already learned. For example, "circle" as a noun is well known, whereas its use as a verb is not. For artificial-intelligence-based support systems for learning vocabulary, assessing each learner's knowledge of such atypical but common…
Descriptors: Language Tests, Vocabulary Development, Second Language Learning, Second Language Instruction
Reilly, Joseph M.; Schneider, Bertrand – International Educational Data Mining Society, 2019
Collaborative problem solving in computer-supported environments is of critical importance to the modern workforce. Coworkers or collaborators must be able to co-create and navigate a shared problem space using discourse and non-verbal cues. Analyzing this discourse can give insights into how consensus is reached and can estimate the depth of…
Descriptors: Problem Solving, Discourse Analysis, Cooperative Learning, Computer Assisted Instruction