NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Emond, Bruno; Buffett, Scott – International Educational Data Mining Society, 2015
This paper reports on results of applying process discovery mining and sequence classification mining techniques to a data set of semi-structured learning activities. The main research objective is to advance educational data mining to model and support self-regulated learning in heterogeneous environments of learning content, activities, and…
Descriptors: Data Analysis, Classification, Learning Activities, Inquiry
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gitinabard, Niki; Barnes, Tiffany; Heckman, Sarah; Lynch, Collin F. – International Educational Data Mining Society, 2019
Students' interactions with online tools can provide us with insights into their study and work habits. Prior research has shown that these habits, even as simple as the number of actions or the time spent on online platforms can distinguish between the higher performing students and low-performers. These habits are also often used to predict…
Descriptors: Blended Learning, Student Adjustment, Online Courses, Study Habits
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xiong, Xiaolu; Zhao, Siyuan; Van Inwegen, Eric G.; Beck, Joseph E. – International Educational Data Mining Society, 2016
Over the last couple of decades, there have been a large variety of approaches towards modeling student knowledge within intelligent tutoring systems. With the booming development of deep learning and large-scale artificial neural networks, there have been empirical successes in a number of machine learning and data mining applications, including…
Descriptors: Intelligent Tutoring Systems, Computer Software, Bayesian Statistics, Knowledge Level
Ye, Cheng; Segedy, James R.; Kinnebrew, John S.; Biswas, Gautam – International Educational Data Mining Society, 2015
This paper discusses Multi-Feature Hierarchical Sequential Pattern Mining, MFH-SPAM, a novel algorithm that efficiently extracts patterns from students' learning activity sequences. This algorithm extends an existing sequential pattern mining algorithm by dynamically selecting the level of specificity for hierarchically-defined features…
Descriptors: Learning Activities, Learning Processes, Data Collection, Student Behavior
Lichtenberg, James W.; And Others – 1984
The purpose of the three papers included here is to describe and illustrate three methods of sequential analysis as they were applied to an analysis of an actual counseling interview between Carl Rogers and "Gloria." In "Markov Models in Process Research," Edward J. Heck applies a Markov model to the analysis of the…
Descriptors: Counselor Client Relationship, Data Analysis, Individual Counseling, Information Theory