NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Qian; Rangwala, Huzefa – International Educational Data Mining Society, 2019
Student's academic performance prediction empowers educational technologies including academic trajectory and degree planning, course recommender systems, early warning and advising systems. Given a student's past data (such as grades in prior courses), the task of student's performance prediction is to predict a student's grades in future…
Descriptors: Academic Achievement, Attention, Prior Learning, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Coleman, Chad; Baker, Ryan S.; Stephenson, Shonte – International Educational Data Mining Society, 2019
Determining which students are at risk of poorer outcomes -- such as dropping out, failing classes, or decreasing standardized examination scores -- has become an important area of research and practice in both K-12 and higher education. The detectors produced from this type of predictive modeling research are increasingly used in early warning…
Descriptors: Prediction, At Risk Students, Predictor Variables, Elementary Secondary Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
McBroom, Jessica; Jeffries, Bryn; Koprinska, Irena; Yacef, Kalina – International Educational Data Mining Society, 2016
Effective mining of data from online submission systems offers the potential to improve educational outcomes by identifying student habits and behaviours and their relationship with levels of achievement. In particular, it may assist in identifying students at risk of performing poorly, allowing for early intervention. In this paper we investigate…
Descriptors: Data Collection, Student Behavior, Academic Achievement, Correlation
Niemi, David; Gitin, Elena – International Association for Development of the Information Society, 2012
An underlying theme of this paper is that it can be easier and more efficient to conduct valid and effective research studies in online environments than in traditional classrooms. Taking advantage of the "big data" available in an online university, we conducted a study in which a massive online database was used to predict student…
Descriptors: Higher Education, Online Courses, Academic Persistence, Identification
Dekker, Gerben W.; Pechenizkiy, Mykola; Vleeshouwers, Jan M. – International Working Group on Educational Data Mining, 2009
The monitoring and support of university freshmen is considered very important at many educational institutions. In this paper we describe the results of the educational data mining case study aimed at predicting the Electrical Engineering (EE) students drop out after the first semester of their studies or even before they enter the study program…
Descriptors: Information Retrieval, Engineering Education, College Freshmen, Case Studies