NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cohausz, Lea; Tschalzev, Andrej; Bartelt, Christian; Stuckenschmidt, Heiner – International Educational Data Mining Society, 2023
Demographic features are commonly used in Educational Data Mining (EDM) research to predict at-risk students. Yet, the practice of using demographic features has to be considered extremely problematic due to the data's sensitive nature, but also because (historic and representation) biases likely exist in the training data, which leads to strong…
Descriptors: Information Retrieval, Data Processing, Pattern Recognition, Information Technology
Niemi, David; Gitin, Elena – International Association for Development of the Information Society, 2012
An underlying theme of this paper is that it can be easier and more efficient to conduct valid and effective research studies in online environments than in traditional classrooms. Taking advantage of the "big data" available in an online university, we conducted a study in which a massive online database was used to predict student…
Descriptors: Higher Education, Online Courses, Academic Persistence, Identification
Pavlik, Philip I., Jr.; Cen, Hao; Koedinger, Kenneth R. – Online Submission, 2009
Knowledge tracing (KT)[1] has been used in various forms for adaptive computerized instruction for more than 40 years. However, despite its long history of application, it is difficult to use in domain model search procedures, has not been used to capture learning where multiple skills are needed to perform a single action, and has not been used…
Descriptors: Performance Factors, Factor Analysis, Computer Software, Computer Assisted Instruction
Michalski, Greg V. – Association for Institutional Research (NJ1), 2011
Excessive college course withdrawals are costly to the student and the institution in terms of time to degree completion, available classroom space, and other resources. Although generally well quantified, detailed analysis of the reasons given by students for course withdrawal is less common. To address this, a text mining analysis was performed…
Descriptors: College Instruction, Courses, Withdrawal (Education), College Students