Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 9 |
Descriptor
Learning Processes | 9 |
Natural Language Processing | 9 |
Learning Analytics | 4 |
Models | 3 |
Prediction | 3 |
Undergraduate Students | 3 |
Automation | 2 |
Computer Mediated… | 2 |
Computer Science Education | 2 |
Computer Software | 2 |
Databases | 2 |
More ▼ |
Author
Ahmed Ashraf | 1 |
Ahmed Magooda | 1 |
Albacete, Patricia | 1 |
Allen, Laura K. | 1 |
Annie Hale | 1 |
Baker, Ryan S. | 1 |
Barnes, Tiffany | 1 |
Betheny Weigele | 1 |
Botarleanu, Robert-Mihai | 1 |
Chani Clark | 1 |
Chi, Min | 1 |
More ▼ |
Publication Type
Reports - Research | 9 |
Speeches/Meeting Papers | 9 |
Education Level
Higher Education | 5 |
Postsecondary Education | 5 |
High Schools | 1 |
Secondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Botarleanu, Robert-Mihai; Dascalu, Mihai; Allen, Laura K.; Crossley, Scott Andrew; McNamara, Danielle S. – Grantee Submission, 2022
Automated scoring of student language is a complex task that requires systems to emulate complex and multi-faceted human evaluation criteria. Summary scoring brings an additional layer of complexity to automated scoring because it involves two texts of differing lengths that must be compared. In this study, we present our approach to automate…
Descriptors: Automation, Scoring, Documentation, Likert Scales
Ahmed Magooda; Diane Litman; Ahmed Ashraf; Muhsin Menekse – Grantee Submission, 2022
Having students write reflections has been shown to help teachers improve their instruction and students improve their learning outcomes. With the aid of Natural Language Processing (NLP), real-time educational applications that can assess and provide feedback on reflection quality can be deployed. In this work, we first evaluate various NLP…
Descriptors: Undergraduate Students, Writing Assignments, Reflection, Natural Language Processing
Xu, Jia; Wei, Tingting; Lv, Pin – International Educational Data Mining Society, 2022
In an Intelligent Tutoring System (ITS), problem (or question) difficulty is one of the most critical parameters, directly impacting problem design, test paper organization, result analysis, and even the fairness guarantee. However, it is very difficult to evaluate the problem difficulty by organized pre-tests or by expertise, because these…
Descriptors: Prediction, Programming, Natural Language Processing, Databases
Danielle S. McNamara; Tracy Arner; Elizabeth Reilley; Paul Alvarado; Chani Clark; Thomas Fikes; Annie Hale; Betheny Weigele – Grantee Submission, 2022
Accounting for complex interactions between contextual variables and learners' individual differences in aptitudes and background requires building the means to connect and access learner data at large scales, across time, and in multiple contexts. This paper describes the ASU Learning@Scale (L@S) project to develop a digital learning network…
Descriptors: Electronic Learning, Educational Technology, Networks, Learning Analytics
Lu, Chang; Cutumisu, Maria – International Educational Data Mining Society, 2021
Digitalization and automation of test administration, score reporting, and feedback provision have the potential to benefit large-scale and formative assessments. Many studies on automated essay scoring (AES) and feedback generation systems were published in the last decade, but few connected AES and feedback generation within a unified framework.…
Descriptors: Learning Processes, Automation, Computer Assisted Testing, Scoring
Švábenský, Valdemar; Baker, Ryan S.; Zambrano, Andrés; Zou, Yishan; Slater, Stefan – International Educational Data Mining Society, 2023
Students who take an online course, such as a MOOC, use the course's discussion forum to ask questions or reach out to instructors when encountering an issue. However, reading and responding to students' questions is difficult to scale because of the time needed to consider each message. As a result, critical issues may be left unresolved, and…
Descriptors: Generalization, Computer Mediated Communication, MOOCs, State Universities
Mao, Ye; Shi, Yang; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2021
As students learn how to program, both their programming code and their understanding of it evolves over time. In this work, we present a general data-driven approach, named "Temporal-ASTNN" for modeling student learning progression in open-ended programming domains. Temporal-ASTNN combines a novel neural network model based on abstract…
Descriptors: Programming, Computer Science Education, Learning Processes, Learning Analytics
Jordan, Pamela; Albacete, Patricia; Katz, Sandra – Grantee Submission, 2016
We explore the effectiveness of a simple algorithm for adaptively deciding whether to further decompose a step in a line of reasoning during tutorial dialogue. We compare two versions of a tutorial dialogue system, Rimac: one that always decomposes a step to its simplest sub-steps and one that adaptively decides to decompose a step based on a…
Descriptors: Algorithms, Decision Making, Intelligent Tutoring Systems, Scaffolding (Teaching Technique)
Mirzaei, Maryam Sadat; Zhang, Qiang; Meshgi, Kourosh; Nishida, Toyoaki – Research-publishing.net, 2019
We developed a story creation platform that allows for collaborative content creation in a 3D environment by utilizing avatars, animations, objects, and backgrounds. Our story envisioning platform provides a shared virtual space that promotes collaborative interaction for story construction, involving a high degree of learner input and control. It…
Descriptors: Cooperative Learning, Computer Simulation, Story Telling, Second Language Learning