NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tsabari, Stav; Segal, Avi; Gal, Kobi – International Educational Data Mining Society, 2023
Automatically identifying struggling students learning to program can assist teachers in providing timely and focused help. This work presents a new deep-learning language model for predicting "bug-fix-time", the expected duration between when a software bug occurs and the time it will be fixed by the student. Such information can guide…
Descriptors: College Students, Computer Science Education, Programming, Error Patterns
Lane, Forrest C.; Henson, Robin K. – Online Submission, 2010
Education research rarely lends itself to large scale experimental research and true randomization, leaving the researcher to quasi-experimental designs. The problem with quasi-experimental research is that underlying factors may impact group selection and lead to potentially biased results. One way to minimize the impact of non-randomization is…
Descriptors: Quasiexperimental Design, Research Methodology, Educational Research, Scores
Zafra, Amelia; Ventura, Sebastian – International Working Group on Educational Data Mining, 2009
The ability to predict a student's performance could be useful in a great number of different ways associated with university-level learning. In this paper, a grammar guided genetic programming algorithm, G3P-MI, has been applied to predict if the student will fail or pass a certain course and identifies activities to promote learning in a…
Descriptors: Foreign Countries, Programming, Academic Achievement, Grades (Scholastic)
Greenberg, Bradley S.; Hnilo, Lynn Rampoldi; Ver Steeg, Linda – 1998
Implementation of the first U.S. television program rating system based on identifying content that could be viewed by specific age groups began in January, 1997. This exploratory survey examined the context of how young people responded to the ratings system. Participating in the May 1997 survey were 462 students in fourth, eighth, and tenth…
Descriptors: Age Differences, Attention, Childhood Attitudes, Childrens Television