Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 7 |
Descriptor
Natural Language Processing | 7 |
Prior Learning | 7 |
Reading Comprehension | 5 |
Graphs | 3 |
Intelligent Tutoring Systems | 3 |
Memory | 3 |
Reading Processes | 3 |
Gender Differences | 2 |
Heuristics | 2 |
Inferences | 2 |
Models | 2 |
More ▼ |
Source
Grantee Submission | 7 |
Author
Publication Type
Speeches/Meeting Papers | 7 |
Reports - Research | 5 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
High Schools | 1 |
Secondary Education | 1 |
Audience
Location
Canada | 1 |
Pennsylvania | 1 |
United States | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Dragos Corlatescu; Micah Watanabe; Stefan Ruseti; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2023
Reading comprehension is essential for both knowledge acquisition and memory reinforcement. Automated modeling of the comprehension process provides insights into the efficacy of specific texts as learning tools. This paper introduces an improved version of the Automated Model of Comprehension, version 3.0 (AMoC v3.0). AMoC v3.0 is based on two…
Descriptors: Reading Comprehension, Models, Concept Mapping, Graphs
Corlatescu, Dragos-Georgian; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2021
Reading comprehension is key to knowledge acquisition and to reinforcing memory for previous information. While reading, a mental representation is constructed in the reader's mind. The mental model comprises the words in the text, the relations between the words, and inferences linking to concepts in prior knowledge. The automated model of…
Descriptors: Reading Comprehension, Reading Processes, Memory, Schemata (Cognition)
Corlatescu, Dragos-Georgian; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2021
Reading comprehension is key to knowledge acquisition and to reinforcing memory for previous information. While reading, a mental representation is constructed in the reader's mind. The mental model comprises the words in the text, the relations between the words, and inferences linking to concepts in prior knowledge. The automated model of…
Descriptors: Reading Comprehension, Memory, Inferences, Syntax
Jordan, Pamela; Albacete, Patricia; Katz, Sandra – Grantee Submission, 2016
Prior research aimed at identifying linguistic features of tutoring that predict learning found interactions between student characteristics (e.g., incoming knowledge level, gender, and affect) and learning. This paper addresses the question: "What do these interactions suggest for developing adaptive natural-language tutoring systems?"…
Descriptors: Intelligent Tutoring Systems, Tutoring, Natural Language Processing, Student Characteristics
Olney, Andrew M.; Pavlik, Philip I., Jr.; Maass, Jaclyn K. – Grantee Submission, 2017
This study investigated the effect of cloze item practice on reading comprehension, where cloze items were either created by humans, by machine using natural language processing techniques, or randomly. Participants from Amazon Mechanical Turk (N = 302) took a pre-test, read a text, and took part in one of five conditions, Do-Nothing, Re-Read,…
Descriptors: Reading Improvement, Reading Comprehension, Prior Learning, Cloze Procedure
Johnson, Amy M.; McCarthy, Kathryn S.; Kopp, Kristopher J.; Perret, Cecile A.; McNamara, Danielle S. – Grantee Submission, 2017
Intelligent tutoring systems for ill-defined domains, such as reading and writing, are critically needed, yet uncommon. Two such systems, the Interactive Strategy Training for Active Reading and Thinking (iSTART) and Writing Pal (W-Pal) use natural language processing (NLP) to assess learners' written (i.e., typed) responses and provide immediate,…
Descriptors: Reading Instruction, Writing Instruction, Intelligent Tutoring Systems, Reading Strategies
Katz, Sandra; Albacete, Patricia; Jordan, Pamela – Grantee Submission, 2016
This poster reports on a study that compared three types of summaries at the end of natural-language tutorial dialogues and a no-dialogue control, to determine which type of summary, if any, best predicted learning gains. Although we found no significant differences between conditions, analyses of gender differences indicate that female students…
Descriptors: Natural Language Processing, Intelligent Tutoring Systems, Reflection, Dialogs (Language)