NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 95 results Save | Export
Cai, Zhiqiang; Siebert-Evenstone, Amanda; Eagan, Brendan; Shaffer, David Williamson – Grantee Submission, 2021
When text datasets are very large, manually coding line by line becomes impractical. As a result, researchers sometimes try to use machine learning algorithms to automatically code text data. One of the most popular algorithms is topic modeling. For a given text dataset, a topic model provides probability distributions of words for a set of…
Descriptors: Coding, Artificial Intelligence, Models, Probability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Aguas-Hidalgo, Maribel; Quintero-Zazueta, Ricardo – North American Chapter of the International Group for the Psychology of Mathematics Education, 2020
In this research, quotient strategies and their influence on decision-making in situations that involve the comparison of probabilities are analyzed. In order to achieve this, classical probability situations modeled with urns were designed. In each situation, two urns with simple extraction, involving or not proportional relationships, were…
Descriptors: Decision Making, Mathematics Instruction, Models, Secondary School Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gruver, Nate; Malik, Ali; Capoor, Brahm; Piech, Chris; Stevens, Mitchell L.; Paepcke, Andreas – International Educational Data Mining Society, 2019
Understanding large-scale patterns in student course enrollment is a problem of great interest to university administrators and educational researchers. Yet important decisions are often made without a good quantitative framework of the process underlying student choices. We propose a probabilistic approach to modelling course enrollment…
Descriptors: Models, Course Selection (Students), Enrollment, Decision Making
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sunahase, Takeru; Baba, Yukino; Kashima, Hisashi – International Educational Data Mining Society, 2019
Peer assessment is a promising solution for scaling up the grading of a large number of submissions. The reliability of evaluations is one of the critical issues in peer assessment; several probabilistic models have been proposed for obtaining reliable grades from peers. Peer correction is a similar framework, in which students are instructed to…
Descriptors: Peer Evaluation, Error Correction, Grading, Reliability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Li, ZhaoBin; Yee, Luna; Sauerberg, Nathaniel; Sakson, Irene; Williams, Joseph Jay; Rafferty, Anna N. – International Educational Data Mining Society, 2020
Digital educational technologies offer the potential to customize students' experiences and learn what works for which students, enhancing the technology as more students interact with it. We consider whether and when attempting to discover how to personalize has a cost, such as if the adaptation to personal information can delay the adoption of…
Descriptors: Educational Technology, Technology Uses in Education, Student Needs, Student Characteristics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hansen, Christian; Hansen, Casper; Alstrup, Stephen; Lioma, Christina – International Educational Data Mining Society, 2019
In this paper we consider the problem of modelling when students end their session in an online mathematics educational system. Being able to model this accurately will help us optimize the way content is presented and consumed. This is done by modelling the probability of an action being the last in a session, which we denote as the…
Descriptors: Integrated Learning Systems, Probability, Foreign Countries, Student Behavior
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhang, Qiao; Maclellan, Christopher J. – International Educational Data Mining Society, 2021
Knowledge tracing algorithms are embedded in Intelligent Tutoring Systems (ITS) to keep track of students' learning process. While knowledge tracing models have been extensively studied in offline settings, very little work has explored their use in online settings. This is primarily because conducting experiments to evaluate and select knowledge…
Descriptors: Electronic Learning, Mastery Learning, Computer Simulation, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Polyzou, Agoritsa; Nikolakopoulos, Athanasios N.; Karypis, George – International Educational Data Mining Society, 2019
Course selection is a crucial and challenging problem that students have to face while navigating through an undergraduate degree program. The decisions they make shape their future in ways that they cannot conceive in advance. Available departmental sample degree plans are not personalized for each student, and personal discussion time with an…
Descriptors: Markov Processes, Course Selection (Students), Undergraduate Students, Decision Making
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Provost, Amanda; Lim, Su San; York, Toni; Panorkou, Nicole – North American Chapter of the International Group for the Psychology of Mathematics Education, 2022
The frequentist and classical models of probability provide students with different lenses through which they can view probability. Prior research showed that students may bridge these two lenses through instructional designs that begin with a clear connection between the two, such as coin tossing. Considering that this connection is not always…
Descriptors: Probability, Models, Mathematics Instruction, Teaching Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Montero, Shirly; Arora, Akshit; Kelly, Sean; Milne, Brent; Mozer, Michael – International Educational Data Mining Society, 2018
Personalized learning environments requiring the elicitation of a student's knowledge state have inspired researchers to propose distinct models to understand that knowledge state. Recently, the spotlight has shone on comparisons between traditional, interpretable models such as Bayesian Knowledge Tracing (BKT) and complex, opaque neural network…
Descriptors: Artificial Intelligence, Individualized Instruction, Knowledge Level, Bayesian Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hansen, Christian; Hansen, Casper; Hjuler, Niklas; Alstrup, Stephen; Lioma, Christina – International Educational Data Mining Society, 2017
The analysis of log data generated by online educational systems is an important task for improving the systems, and furthering our knowledge of how students learn. This paper uses previously unseen log data from Edulab, the largest provider of digital learning for mathematics in Denmark, to analyse the sessions of its users, where 1.08 million…
Descriptors: Foreign Countries, Markov Processes, Mathematical Models, Student Behavior
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Park, Jihyun; Yu, Renzhe; Rodriguez, Fernando; Baker, Rachel; Smyth, Padhraic; Warschauer, Mark – International Educational Data Mining Society, 2018
Time management is crucial to success in online courses in which students can schedule their learning on a flexible basis. Procrastination is largely viewed as a failure of time management and has been linked to poorer outcomes for students. Past research has quantified the extent of students' procrastination by defining single measures directly…
Descriptors: Time Management, Online Courses, Electronic Learning, Probability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2020
Modeling student learning processes is highly complex since it is influenced by many factors such as motivation and learning habits. The high volume of features and tools provided by computer-based learning environments confounds the task of tracking student knowledge even further. Deep Learning models such as Long-Short Term Memory (LSTMs) and…
Descriptors: Time, Models, Artificial Intelligence, Bayesian Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Banjade, Rajendra; Rus, Vasile – International Educational Data Mining Society, 2019
Automatic answer assessment systems typically apply semantic similarity methods where student responses are compared with some reference answers in order to access their correctness. But student responses in dialogue based tutoring systems are often grammatically and semantically incomplete and additional information (e.g., dialogue history) is…
Descriptors: Dialogs (Language), Probability, Intelligent Tutoring Systems, Semantics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Doroudi, Shayan; Brunskill, Emma – International Educational Data Mining Society, 2017
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
Descriptors: Bayesian Statistics, Research Problems, Models, Learning
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7