Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 6 |
Descriptor
Anatomy | 6 |
Computer Peripherals | 6 |
Models | 6 |
Printing | 4 |
Technology Uses in Education | 4 |
Accuracy | 3 |
Laboratory Procedures | 2 |
Medical Education | 2 |
Medical Students | 2 |
Student Attitudes | 2 |
Active Learning | 1 |
More ▼ |
Source
Anatomical Sciences Education | 6 |
Author
Publication Type
Journal Articles | 6 |
Reports - Research | 4 |
Reports - Descriptive | 2 |
Education Level
Higher Education | 5 |
Postsecondary Education | 3 |
Audience
Location
United Kingdom | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Jinga, Maria-Ruxandra; Lee, Rachel B. Y.; Chan, Kai Lok; Marway, Prabhvir S.; Nandapalan, Krishan; Rhode, Kawal; Kui, Christopher; Lee, Matthew – Anatomical Sciences Education, 2023
Three-dimensional (3D) segmentation, a process involving digitally marking anatomical structures on cross-sectional images such as computed tomography (CT), and 3D printing (3DP) are being increasingly utilized in medical education. Exposure to this technology within medical schools and hospitals remains limited in the United Kingdom. M3dicube UK,…
Descriptors: Computer Simulation, Computer Peripherals, Printing, Anatomy
Backhouse, Simon; Taylor, Darci; Armitage, James A. – Anatomical Sciences Education, 2019
Understanding orbital anatomy is important for optometry students, but the learning resources available are often fragile, expensive, and accessible only during scheduled classes. Drawing on a constructivist, personalized approach to learning, this study investigated students' perceptions of an alternative learning resource: a three-dimensional…
Descriptors: Anatomy, Optometry, College Students, Student Attitudes
Li, Fangzheng; Liu, Chunying; Song, Xuexiong; Huan, Yanjun; Gao, Shansong; Jiang, Zhongling – Anatomical Sciences Education, 2018
Access to adequate anatomical specimens can be an important aspect in learning the anatomy of domestic animals. In this study, the authors utilized a structured light scanner and fused deposition modeling (FDM) printer to produce highly accurate animal skeletal models. First, various components of the bovine skeleton, including the femur, the…
Descriptors: Anatomy, Animals, Models, Computer Peripherals
Smith, Michelle L.; Jones, James F. X. – Anatomical Sciences Education, 2018
Two material 3D printing is becoming increasingly popular, inexpensive and accessible. In this paper, freely available printable files and dual extrusion fused deposition modelling were combined to create a number of functional anatomical models. To represent muscle and bone FilaFlex[superscript 3D] flexible filament and polylactic acid (PLA)…
Descriptors: Computer Peripherals, Printing, Technology Uses in Education, Anatomy
O'Reilly, Michael K.; Reese, Sven; Herlihy, Therese; Geoghegan, Tony; Cantwell, Colin P.; Feeney, Robin N. M.; Jones, James F. X. – Anatomical Sciences Education, 2016
For centuries, cadaveric dissection has been the touchstone of anatomy education. It offers a medical student intimate access to his or her first patient. In contrast to idealized artisan anatomical models, it presents the natural variation of anatomy in fine detail. However, a new teaching construct has appeared recently in which artificial…
Descriptors: Anatomy, Visual Aids, Models, Medical Education
Mogali, Sreenivasulu Reddy; Yeong, Wai Yee; Tan, Heang Kuan Joel; Tan, Gerald Jit Shen; Abrahams, Peter H.; Zary, Nabil; Low-Beer, Naomi; Ferenczi, Michael Alan – Anatomical Sciences Education, 2018
For centuries, cadaveric material has been the cornerstone of anatomical education. For reasons of changes in curriculum emphasis, cost, availability, expertise, and ethical concerns, several medical schools have replaced wet cadaveric specimens with plastinated prosections, plastic models, imaging, and digital models. Discussions about the…
Descriptors: Medical Students, Student Evaluation, Computer Peripherals, Printing