Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 11 |
Descriptor
Bayesian Statistics | 11 |
Item Response Theory | 5 |
Test Items | 5 |
Models | 4 |
Scores | 4 |
Comparative Analysis | 3 |
Probability | 3 |
Academic Achievement | 2 |
Computation | 2 |
Correlation | 2 |
Difficulty Level | 2 |
More ▼ |
Source
Applied Measurement in… | 11 |
Author
Abu-Ghazalah, Rashid M. | 1 |
Allen, Jeff | 1 |
Dadey, Nathan | 1 |
Dubins, David N. | 1 |
George A. Marcoulides | 1 |
Jian, Sun Xiao | 1 |
Kim, Stella Yun | 1 |
Koziol, Natalie A. | 1 |
Lee, Won-Chan | 1 |
Liu, Yan Lou | 1 |
Lozano, José H. | 1 |
More ▼ |
Publication Type
Journal Articles | 11 |
Reports - Research | 10 |
Reports - Descriptive | 1 |
Education Level
Elementary Education | 1 |
Grade 10 | 1 |
Grade 11 | 1 |
Grade 4 | 1 |
Grade 9 | 1 |
High Schools | 1 |
Higher Education | 1 |
Intermediate Grades | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Postsecondary Education | 1 |
More ▼ |
Audience
Practitioners | 1 |
Location
Canada | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Tenko Raykov; George A. Marcoulides; Natalja Menold – Applied Measurement in Education, 2024
We discuss an application of Bayesian factor analysis for estimation of the optimal linear combination and associated maximal reliability of a multi-component measuring instrument. The described procedure yields point and credibility interval estimates of this reliability coefficient, which are readily obtained in educational and behavioral…
Descriptors: Bayesian Statistics, Test Reliability, Error of Measurement, Measurement Equipment
Bayesian Logistic Regression: A New Method to Calibrate Pretest Items in Multistage Adaptive Testing
TsungHan Ho – Applied Measurement in Education, 2023
An operational multistage adaptive test (MST) requires the development of a large item bank and the effort to continuously replenish the item bank due to concerns about test security and validity over the long term. New items should be pretested and linked to the item bank before being used operationally. The linking item volume fluctuations in…
Descriptors: Bayesian Statistics, Regression (Statistics), Test Items, Pretesting
Wang, Ling Ling; Jian, Sun Xiao; Liu, Yan Lou; Xin, Tao – Applied Measurement in Education, 2023
Cognitive diagnostic assessment based on Bayesian networks (BN) is developed in this paper to evaluate student understanding of the physical concept of buoyancy. we propose a three-order granular-hierarchy BN model which accounts for both fine-grained attributes and high-level proficiencies. Conditional independence in the BN structure is tested…
Descriptors: Bayesian Statistics, Networks, Cognitive Measurement, Diagnostic Tests
Kim, Stella Yun; Lee, Won-Chan – Applied Measurement in Education, 2023
This study evaluates various scoring methods including number-correct scoring, IRT theta scoring, and hybrid scoring in terms of scale-score stability over time. A simulation study was conducted to examine the relative performance of five scoring methods in terms of preserving the first two moments of scale scores for a population in a chain of…
Descriptors: Scoring, Comparative Analysis, Item Response Theory, Simulation
Lozano, José H.; Revuelta, Javier – Applied Measurement in Education, 2021
The present study proposes a Bayesian approach for estimating and testing the operation-specific learning model, a variant of the linear logistic test model that allows for the measurement of the learning that occurs during a test as a result of the repeated use of the operations involved in the items. The advantages of using a Bayesian framework…
Descriptors: Bayesian Statistics, Computation, Learning, Testing
Abu-Ghazalah, Rashid M.; Dubins, David N.; Poon, Gregory M. K. – Applied Measurement in Education, 2023
Multiple choice results are inherently probabilistic outcomes, as correct responses reflect a combination of knowledge and guessing, while incorrect responses additionally reflect blunder, a confidently committed mistake. To objectively resolve knowledge from responses in an MC test structure, we evaluated probabilistic models that explicitly…
Descriptors: Guessing (Tests), Multiple Choice Tests, Probability, Models
Xu, Jiajun; Dadey, Nathan – Applied Measurement in Education, 2022
This paper explores how student performance across the full set of multiple modular assessments of individual standards, which we refer to as mini-assessments, from a large scale, operational program of interim assessment can be summarized using Bayesian networks. We follow a completely data-driven approach in which no constraints are imposed to…
Descriptors: Bayesian Statistics, Learning Analytics, Scores, Academic Achievement
Dynamic Bayesian Networks in Educational Measurement: Reviewing and Advancing the State of the Field
Reichenberg, Ray – Applied Measurement in Education, 2018
As the popularity of rich assessment scenarios increases so must the availability of psychometric models capable of handling the resulting data. Dynamic Bayesian networks (DBNs) offer a fast, flexible option for characterizing student ability across time under psychometrically complex conditions. In this article, a brief introduction to DBNs is…
Descriptors: Bayesian Statistics, Measurement, Student Evaluation, Psychometrics
Pan, Tianshu; Yin, Yue – Applied Measurement in Education, 2017
In this article, we propose using the Bayes factors (BF) to evaluate person fit in item response theory models under the framework of Bayesian evaluation of an informative diagnostic hypothesis. We first discuss the theoretical foundation for this application and how to analyze person fit using BF. To demonstrate the feasibility of this approach,…
Descriptors: Bayesian Statistics, Goodness of Fit, Item Response Theory, Monte Carlo Methods
Allen, Jeff – Applied Measurement in Education, 2017
Using a sample of schools testing annually in grades 9-11 with a vertically linked series of assessments, a latent growth curve model is used to model test scores with student intercepts and slopes nested within school. Missed assessments can occur because of student mobility, student dropout, absenteeism, and other reasons. Missing data…
Descriptors: Achievement Gains, Academic Achievement, Growth Models, Scores
Koziol, Natalie A. – Applied Measurement in Education, 2016
Testlets, or groups of related items, are commonly included in educational assessments due to their many logistical and conceptual advantages. Despite their advantages, testlets introduce complications into the theory and practice of educational measurement. Responses to items within a testlet tend to be correlated even after controlling for…
Descriptors: Classification, Accuracy, Comparative Analysis, Models