NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Shaojie Wang; Won-Chan Lee; Minqiang Zhang; Lixin Yuan – Applied Measurement in Education, 2024
To reduce the impact of parameter estimation errors on IRT linking results, recent work introduced two information-weighted characteristic curve methods for dichotomous items. These two methods showed outstanding performance in both simulation and pseudo-form pseudo-group analysis. The current study expands upon the concept of information…
Descriptors: Item Response Theory, Test Format, Test Length, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Silva Diaz, John Alexander; Köhler, Carmen; Hartig, Johannes – Applied Measurement in Education, 2022
Testing item fit is central in item response theory (IRT) modeling, since a good fit is necessary to draw valid inferences from estimated model parameters. "Infit" and "outfit" fit statistics, widespread indices for detecting deviations from the Rasch model, are affected by data factors, such as sample size. Consequently, the…
Descriptors: Intervals, Item Response Theory, Item Analysis, Inferences
Peer reviewed Peer reviewed
Direct linkDirect link
Peabody, Michael R. – Applied Measurement in Education, 2020
The purpose of the current article is to introduce the equating and evaluation methods used in this special issue. Although a comprehensive review of all existing models and methodologies would be impractical given the format, a brief introduction to some of the more popular models will be provided. A brief discussion of the conditions required…
Descriptors: Evaluation Methods, Equated Scores, Sample Size, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Goodman, Joshua T.; Dallas, Andrew D.; Fan, Fen – Applied Measurement in Education, 2020
Recent research has suggested that re-setting the standard for each administration of a small sample examination, in addition to the high cost, does not adequately maintain similar performance expectations year after year. Small-sample equating methods have shown promise with samples between 20 and 30. For groups that have fewer than 20 students,…
Descriptors: Equated Scores, Sample Size, Sampling, Weighted Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Kopp, Jason P.; Jones, Andrew T. – Applied Measurement in Education, 2020
Traditional psychometric guidelines suggest that at least several hundred respondents are needed to obtain accurate parameter estimates under the Rasch model. However, recent research indicates that Rasch equating results in accurate parameter estimates with sample sizes as small as 25. Item parameter drift under the Rasch model has been…
Descriptors: Item Response Theory, Psychometrics, Sample Size, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Abulela, Mohammed A. A.; Rios, Joseph A. – Applied Measurement in Education, 2022
When there are no personal consequences associated with test performance for examinees, rapid guessing (RG) is a concern and can differ between subgroups. To date, the impact of differential RG on item-level measurement invariance has received minimal attention. To that end, a simulation study was conducted to examine the robustness of the…
Descriptors: Comparative Analysis, Robustness (Statistics), Nonparametric Statistics, Item Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Michaelides, Michalis P.; Haertel, Edward H. – Applied Measurement in Education, 2014
The standard error of equating quantifies the variability in the estimation of an equating function. Because common items for deriving equated scores are treated as fixed, the only source of variability typically considered arises from the estimation of common-item parameters from responses of samples of examinees. Use of alternative, equally…
Descriptors: Equated Scores, Test Items, Sampling, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Phillips, Gary W. – Applied Measurement in Education, 2015
This article proposes that sampling design effects have potentially huge unrecognized impacts on the results reported by large-scale district and state assessments in the United States. When design effects are unrecognized and unaccounted for they lead to underestimating the sampling error in item and test statistics. Underestimating the sampling…
Descriptors: State Programs, Sampling, Research Design, Error of Measurement