NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Alsawalmeh, Yousef M.; Feldt, Leonard S. – Applied Psychological Measurement, 1992
An approximate statistical test is derived for the hypothesis that the intraclass reliability coefficients associated with two measurement procedures are equal. Control of Type 1 error is investigated by comparing empirical sampling distributions of the test statistic with its derived theoretical distribution. A numerical illustration is…
Descriptors: Equations (Mathematics), Hypothesis Testing, Mathematical Models, Measurement Techniques
Peer reviewed Peer reviewed
Forsyth, Robert A. – Applied Psychological Measurement, 1978
This note shows that, under conditions specified by Levin and Subkoviak (TM 503 420), it is not necessary to specify the reliabilities of observed scores when comparing completely randomized designs with randomized block designs. Certain errors in their illustrative example are also discussed. (Author/CTM)
Descriptors: Analysis of Variance, Error of Measurement, Hypothesis Testing, Reliability
Peer reviewed Peer reviewed
Levin, Joel R.; Subkoviak, Michael J. – Applied Psychological Measurement, 1978
Comments (TM 503 706) on an earlier article (TM 503 420) concerning the comparison of the completely randomized design and the randomized block design are acknowledged and appreciated. In addition, potentially misleading notions arising from these comments are addressed and clarified. (See also TM 503 708). (Author/CTM)
Descriptors: Analysis of Variance, Error of Measurement, Hypothesis Testing, Reliability
Peer reviewed Peer reviewed
Forsyth, Robert A. – Applied Psychological Measurement, 1978
This note continues the discussion of earlier articles (TM 503 420, TM 503 706, and TM 503 707), comparing the completely randomized design with the randomized block design. (CTM)
Descriptors: Analysis of Variance, Error of Measurement, Hypothesis Testing, Reliability
Peer reviewed Peer reviewed
Levin, Joel R.; Subkoviak, Michael J. – Applied Psychological Measurement, 1977
Textbook calculations of statistical power or sample size follow from formulas that assume that the variables under consideration are measured without error. However, in the real world of behavioral research, errors of measurement cannot be neglected. The determination of sample size is discussed, and an example illustrates blocking strategy.…
Descriptors: Analysis of Covariance, Analysis of Variance, Error of Measurement, Hypothesis Testing