NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1324876
Record Type: Journal
Publication Date: 2021
Pages: 18
Abstractor: As Provided
ISBN: N/A
ISSN: EISSN-1449-5554
EISSN: N/A
Available Date: N/A
Applying Natural Language Processing to Automatically Assess Student Conceptual Understanding from Textual Responses
Australasian Journal of Educational Technology, v37 n5 p98-115 2021
In this study, we applied natural language processing (NLP) techniques, within an educational environment, to evaluate their usefulness for automated assessment of students' conceptual understanding from their short answer responses. Assessing understanding provides insight into and feedback on students' conceptual understanding, which is often overlooked in automated grading. Students and educators benefit from automated formative assessment, especially in online education and large cohorts, by providing insights into conceptual understanding as and when required. We selected the ELECTRA-small, RoBERTa-base, XLNet-base and ALBERT-base-v2 NLP machine learning models to determine the free-text validity of students' justification and the level of confidence in their responses. These two pieces of information provide key insights into students' conceptual understanding and the nature of their understanding. We developed a free-text validity ensemble using high performance NLP models to assess the validity of students' justification with accuracies ranging from 91.46% to 98.66%. In addition, we proposed a general, non-question-specific confidence-in-response model that can categorise a response as high or low confidence with accuracies ranging from 93.07% to 99.46%. With the strong performance of these models being applicable to small data sets, there is a great opportunity for educators to implement these techniques within their own classes.
Australasian Society for Computers in Learning in Tertiary Education. Ascilite Secretariat, P.O. Box 44, Figtree, NSW, Australia. Tel: +61-8-9367-1133; e-mail: info@ascilite.org.au; Web site: https://ajet.org.au/index.php/AJET
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A