NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 61 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
He, Q. Peter; Wang, Jin; Zhang, Rong; Johnson, Donald; Knight, Andrew; Polala, Ravali – Chemical Engineering Education, 2016
In view of potential demand for skilled engineers and competent researchers in the biofuels field, we have identified a significant gap between advanced biofuels research and undergraduate biofuels education in chemical engineering. To help bridge this gap, we created educational materials that systematically integrate biofuels technologies into…
Descriptors: Fuels, Teaching Methods, Researchers, Chemical Engineering
Peer reviewed Peer reviewed
Direct linkDirect link
Grassi, Vincent G.; Luyben, William L.; Silebi, Cesar A. – Chemical Engineering Education, 2011
This paper discusses a two-semester senior design course that combines traditional steady-state economic process design with dynamic plantwide control. This unique course has been taught at Lehigh for more than a decade and has garnered rave reviews from students, industry, and ABET. Each student design group has its own industrial consultant who…
Descriptors: Chemical Engineering, Engineering Education, Design, Advanced Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Kopelevich, Dmitry I.; Ziegler, Kirk J.; Lindner, Angela S.; Bonzongo, Jean-Claude J. – Chemical Engineering Education, 2012
Because rapid growth of nanotechnology is expected to lead to intentional and non-intentional releases, future engineers will need to minimize negative environmental and health impacts of nanomaterials. We developed two upper-level undergraduate courses centered on life-cycle assessment of nanomaterials. The first part of the course sequence…
Descriptors: Curriculum Design, Engineering Education, Higher Education, Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Carta, Jungbauer – Chemical Engineering Education, 2011
We describe an intensive course that integrates graduate and continuing education focused on the development and scale-up of chromatography processes used for the recovery and purification of proteins with special emphasis on biotherapeutics. The course includes lectures, laboratories, teamwork, and a design exercise and offers a complete view of…
Descriptors: Chemistry, Chemical Engineering, Engineering Education, Graduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Ortiz-Rodriguez, Estanislao; Vazquez-Arenas, Jorge; Ricardez-Sandoval, Luis A. – Chemical Engineering Education, 2010
An overview of a course on modeling and simulation offered at the Nanotechnology Engineering undergraduate program at the University of Waterloo. The motivation for having this course in the undergraduate nanotechnology curriculum, the course structure, and its learning objectives are discussed. Further, one of the computational laboratories…
Descriptors: Course Content, Laboratories, Undergraduate Students, Universities
Peer reviewed Peer reviewed
Direct linkDirect link
Minerick, Adrienne R. – Chemical Engineering Education, 2010
An implementation and assessment of three creative-learning mechanisms in a research-inspired split undergraduate/graduate course in Analytical Microdevice Technology is described. Microscale research is challenging to incorporate into the classroom due to the phenomena length-scales and the creating learning strategies were used to promote…
Descriptors: Cognitive Style, Elective Courses, Learning Strategies, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Harris, Andrew T. – Chemical Engineering Education, 2009
The University of Sydney has offered an undergraduate course in particle technology using a contemporary problem based learning (PBL) methodology since 2005. Student learning is developed through the solution of complex, open-ended problems drawn from modern chemical engineering practice. Two examples are presented; i) zero emission electricity…
Descriptors: Feedback (Response), Problem Based Learning, Course Evaluation, Foreign Countries
Peer reviewed Peer reviewed
Shah, D. B. – Chemical Engineering Education, 1984
Describes a course designed to achieve a balance between exposing students to (1) advanced topics in transport phenomena, pointing out similarities and differences between three transfer processes and (2) common methods of solving differential equations. (JN)
Descriptors: Chemical Engineering, Course Content, Course Descriptions, Engineering Education
Peer reviewed Peer reviewed
Radovic, Ljubisa R. – Chemical Engineering Education, 1985
Describes the content, objectives, and requirements for a one-semester (30 20-hour sessions) graduate engineering course at the University of Concepcion, Chile. Major course topics include: structure and properties of coal; coal pyrolysis and carbonization; coal liquefaction; coal combustion and gasification; and economic and environmental…
Descriptors: Chemical Engineering, Coal, Course Content, Course Descriptions
Peer reviewed Peer reviewed
Direct linkDirect link
Bullard, Lisa G.; Felder, Richard M. – Chemical Engineering Education, 2007
This two-part series describes the structure of the stoichiometry course at North Carolina State University. The course had a variety of learning objectives, and several nontraditional pedagogies were used in the course delivery. The first paper outlined the course structure and policies, the preparation given to the teaching assistants who played…
Descriptors: Course Content, Course Organization, Stoichiometry, Educational Objectives
Peer reviewed Peer reviewed
Mewis, Jan – Chemical Engineering Education, 1984
Discusses aims, objectives, and content of a safety course for chemical engineering students. Course emphasizes awareness of hazards, basic concepts and principles of safety engineering, and the ability to recognize, assess, and remedy specific risks occurring in chemical plants. Course implementation is also discussed. (JN)
Descriptors: Chemical Engineering, Course Content, Course Objectives, Engineering Education
Peer reviewed Peer reviewed
Lauffenburger, Douglas; And Others – Chemical Engineering Education, 1984
First year chemical engineering students are required to take a two-semester sequence in applied mathematics at the University of Pennsylvania, with the option of taking a third semester elective course. The content of the courses and the approaches used are discussed. A list of textbooks used is also provided. (JN)
Descriptors: Chemical Engineering, Course Content, Course Descriptions, Engineering Education
Peer reviewed Peer reviewed
Liu, Y. A. – Chemical Engineering Education, 1980
Presents a detailed outline of topics and lectures and references for a survey course on process synthesis at Auburn University, Alabama. (JN)
Descriptors: Chemistry, Course Content, Course Descriptions, Energy
Peer reviewed Peer reviewed
Sawin, Herbert H.; Reif, Rafael – Chemical Engineering Education, 1983
Describes a course, taught jointly by electrical/chemical engineering departments at the Massachusetts Institute of Technology, designed to teach the fundamental science of plasma processing as well as to give an overview of the present state of industrial processes. Provides rationale for course development, texts used, class composition, and…
Descriptors: Chemical Engineering, Chemistry, Course Content, Course Descriptions
Peer reviewed Peer reviewed
Dorathy, Brian D.; Mooers, Jamisue A.; Warren, Matthew M.; Mich, Jennifer L.; Murhammer, David W. – Chemical Engineering Education, 2001
Points out the need to educate undergraduate chemical engineering students on chemical process safety and introduces the content of a chemical process safety course offered at the University of Iowa. Presents laboratory experiments demonstrating flammability limits, flash points, electrostatic, runaway reactions, explosions, and relief design.…
Descriptors: Chemical Engineering, Chemistry, Course Content, Engineering Education
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4  |  5