NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Chemical Engineering Education33
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 33 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Elkhatat, Ahmed M.; Al-Muhtaseb, Shaheen A. – Chemical Engineering Education, 2022
A Computer-Aided Learning Package as Inquiry-Guided Learning (CALP/IGL) was implemented in a cooling tower experiment for 43 students enrolled in four sections of the Unit Operations Laboratory course in the chemical engineering program at Qatar University. The impact of this approach on the attainment of learning outcomes was evaluated. Results…
Descriptors: Inquiry, Active Learning, Engineering Education, Computer Assisted Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Chapman, Kayla E.; Davidson, Megan E.; Liberatore, Matthew W. – Chemical Engineering Education, 2021
Student success and attempts on hundreds of online homework problems housed in a fully interactive online textbook, Material and Energy Balances zyBook, were studied over three cohorts of students (n=284). Auto-graded homework questions with randomized numbers and content can explore proficiency in the course material. Students are allowed to…
Descriptors: Energy, Homework, Science Instruction, Textbooks
Peer reviewed Peer reviewed
Direct linkDirect link
Falconer, John L.; Hendren, Neil – Chemical Engineering Education, 2021
A virtual catalytic reactor laboratory (VCRL) experiment, which can be used in most browsers, is described. Students select feed conditions and use the VCRL to take data for a gas-phase catalytic reaction and fit kinetic parameters to a Langmuir-Hinshelwood rate expression. The VCRL contains instructions, equipment descriptions, an animated…
Descriptors: Science Instruction, Computer Simulation, Laboratory Experiments, Laboratory Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Falconer, John L. – Chemical Engineering Education, 2016
More than 40 interactive "Mathematica" simulations were prepared for chemical engineering thermodynamics, screencasts were prepared that explain how to use each simulation, and more than 100 ConcepTests were prepared that utilize the simulations. They are located on www.LearnChemE.com. The purposes of these simulations are to clarify…
Descriptors: Thermodynamics, Simulation, Chemical Engineering, Engineering Education
Peer reviewed Peer reviewed
Direct linkDirect link
He, Q. Peter; Wang, Jin; Zhang, Rong; Johnson, Donald; Knight, Andrew; Polala, Ravali – Chemical Engineering Education, 2016
In view of potential demand for skilled engineers and competent researchers in the biofuels field, we have identified a significant gap between advanced biofuels research and undergraduate biofuels education in chemical engineering. To help bridge this gap, we created educational materials that systematically integrate biofuels technologies into…
Descriptors: Fuels, Teaching Methods, Researchers, Chemical Engineering
Peer reviewed Peer reviewed
Direct linkDirect link
Zualkernan, Imran A.; Husseini, Ghaleb A.; Loughlin, Kevin F.; Mohebzada, Jamshaid G.; El Gaml, Moataz – Chemical Engineering Education, 2013
Social networking platforms and computer games represent a natural informal learning environment for the current generation of learners in higher education. This paper explores the use of game-based learning in the context of an undergraduate chemical engineering remote laboratory. Specifically, students are allowed to manipulate chemical…
Descriptors: Social Networks, Chemical Engineering, Computer Games, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Ali, Emad; Idriss, Arimiyawo – Chemical Engineering Education, 2009
Recently, chemical engineering education moves towards utilizing simulation soft wares to enhance the learning process especially in the field of process control. These training simulators provide interactive learning through visualization and practicing which will bridge the gap between the theoretical abstraction of textbooks and the…
Descriptors: Engineering Education, Chemical Engineering, Computer Simulation, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Rossiter, Diane; Petrulis, Robert; Biggs, Catherine A. – Chemical Engineering Education, 2010
This paper describes the development of a first-year chemical engineering course over 5 years through action research based on evidence from student feedback. As a result of this research, the course has evolved into a blended approach which incorporates problem based learning (PBL) and online learning tools. Through the use of PBL, the students…
Descriptors: Electronic Learning, Feedback (Response), Action Research, Problem Based Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Clarke, Matthew A.; Giraldo, Carlos – Chemical Engineering Education, 2009
Chemical process simulation is one of the most fundamental skills that is expected from chemical engineers, yet relatively few graduates have the opportunity to learn, in depth, how a process simulator works, from programming the unit operations to the sequencing. The University of Calgary offers a "hands-on" postgraduate course in…
Descriptors: Computer Simulation, Chemical Engineering, Programming, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Smith, Tamara Floyd; Baah, David; Bradley, James; Sidler, Michelle; Hall, Rosine; Daughtrey, Terrell; Curtis, Christine – Chemical Engineering Education, 2010
A Synchronous Distance Education (SDE) course, jointly offered by Auburn University, Tuskegee University and Auburn University at Montgomery, introduced non-science majors to the concepts of nanoscience. Lectures originated from each of the three campuses during the semester, and video conferencing equipment allowed students at all three campuses…
Descriptors: Distance Education, Synchronous Communication, Course Descriptions, Lecture Method
Peer reviewed Peer reviewed
Direct linkDirect link
Savage, Phillip E. – Chemical Engineering Education, 2008
Students rarely see closed-form analytical rate equations derived from underlying chemical mechanisms that contain more than a few steps unless restrictive simplifying assumptions (e.g., existence of a rate-determining step) are made. Yet, work published decades ago allows closed-form analytical rate equations to be written quickly and easily for…
Descriptors: Equations (Mathematics), Algebra, Teaching Methods, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Vaidyanath, Sreeram; Williams, Jason; Hilliard, Marcus; Wiesner, Theodore – Chemical Engineering Education, 2007
Computer-simulated experiments offer many benefits to engineering curricula in the areas of safety, cost, and flexibility. We report our experience in developing and deploying a computer-simulated unit operations laboratory, driven by the guiding principle of maximum fidelity to the physical lab. We find that, while the up-front investment in…
Descriptors: Engineering Education, Laboratories, Computer Assisted Instruction, Simulation
Peer reviewed Peer reviewed
Dunn, I. J.; And Others – Chemical Engineering Education, 1976
Describes a chemical engineering laboratory course based on the modelling and computer simulation of dynamic experimental conditions. (MLH)
Descriptors: Computer Assisted Instruction, Digital Computers, Engineering, Engineering Education
Peer reviewed Peer reviewed
Clark, J. Peter; Sommerfeld, Jude T. – Chemical Engineering Education, 1976
Describes the use in chemical engineering education of FLOWTRAN, a large steady-state simulator of chemical processes with extensive facilities for physical and thermodynamic data-handling and a large library of equipment modules, including cost estimation capability. (MLH)
Descriptors: Chemical Reactions, Computer Assisted Instruction, Educational Media, Educational Programs
Peer reviewed Peer reviewed
Wengrow, Henry R.; And Others – Chemical Engineering Education, 1977
Describes an interactive computer program that can solve most common control problems arising in chemical engineering. (MLH)
Descriptors: Computer Assisted Instruction, Computer Programs, Computers, Engineering
Previous Page | Next Page ยป
Pages: 1  |  2  |  3