NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 23 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Michael P. Howard; Symone L. M. Alexander – Chemical Engineering Education, 2024
Chemical engineers must learn to connect concepts across vastly different scales, spanning from molecular structures to industrial processes. Here, we explore the use of a virtual-reality simulation with a companion video of an experiment to help undergraduate students connect nanoscale fundamentals to macroscale engineering observations.
Descriptors: Chemical Engineering, Computer Simulation, Video Technology, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Roman, Claudia; Delgado, Miguel A.; Garcia-Morales, Moises – Chemical Engineering Education, 2021
The benefits of using Microsoft Excel built-in functions in an undergraduate Multistage Separations course are analyzed based on 15 years of experience teaching mass transfer in Chemical Engineering programs at both the Bachelor's and Master's levels. Eight reasons for using spreadsheets in a Mass Transfer virtual course are given. Through the…
Descriptors: Computation, Spreadsheets, Undergraduate Students, Engineering Education
Peer reviewed Peer reviewed
Direct linkDirect link
Falconer, John L.; Hendren, Neil – Chemical Engineering Education, 2021
A virtual catalytic reactor laboratory (VCRL) experiment, which can be used in most browsers, is described. Students select feed conditions and use the VCRL to take data for a gas-phase catalytic reaction and fit kinetic parameters to a Langmuir-Hinshelwood rate expression. The VCRL contains instructions, equipment descriptions, an animated…
Descriptors: Science Instruction, Computer Simulation, Laboratory Experiments, Laboratory Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Nottis, Katharyn E. K.; Vigeant, Margot A.; Prince, Michael J.; Golightly, Amy Frances; Gadoury, Carrine Megan – Chemical Engineering Education, 2019
Heat and temperature concepts are found at all levels in the science curricula and are well-known for creating conceptual difficulties for learners. Students have difficulty understanding concepts related to heat, temperature, and thermal radiation. Inquiry-based pedagogies that can foster the learning of these difficult concepts are needed.…
Descriptors: Computer Simulation, Science Experiments, Heat, Active Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Falconer, John L.; Nicodemus, Garret D. – Chemical Engineering Education, 2014
Interactive Mathematica simulations with graphical displays of system behavior are an excellent addition to chemical engineering courses. The Manipulate command in Mathematica creates on-screen controls that allow users to change system variables and see the graphical output almost instantaneously. They can be used both in and outside class. More…
Descriptors: Computer Simulation, Mathematics, Engineering Education, Chemical Engineering
Peer reviewed Peer reviewed
Direct linkDirect link
Bowen, Alec S.; Reid, Daniel R.; Koretsky, Milo D. – Chemical Engineering Education, 2015
In this project, we explore the use of threshold concept theory as a design basis for development of Interactive Virtual Laboratories in thermodynamics. Thermodynamics is a difficult subject for chemical and biological engineering students to master. One reason for the difficulty is the diverse and challenging set of threshold concepts that they…
Descriptors: Thermodynamics, Science Laboratories, Computer Simulation, Science Process Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Silva, Carlos M.; Vaz, Raquel V.; Santiago, Ana S.; Lito, Patricia F. – Chemical Engineering Education, 2011
The importance of distillation in the separation field prompts the inclusion of distillation experiments in the chemical engineering curricula. This work describes the performance of an Oldershaw column in the rectification of a cyclohexane/n-heptane mixture. Total reflux distillation, continuous rectification under partial reflux, and batch…
Descriptors: Chemical Engineering, Science Experiments, Chemistry, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Chirdon, William M. – Chemical Engineering Education, 2010
This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…
Descriptors: Plastics, Computer Simulation, Internet, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Murthi, Manohar; Shea, Lonnie D.; Snurr, Randall Q. – Chemical Engineering Education, 2009
Problems requiring numerical solutions of differential equations or the use of agent-based modeling are presented for use in a course on mass transfer. These problems were solved using the popular technical computing language MATLABTM. Students were introduced to MATLAB via a problem with an analytical solution. A more complex problem to which no…
Descriptors: Scientific Concepts, Chemical Engineering, Engineering Education, Calculus
Peer reviewed Peer reviewed
Direct linkDirect link
Evans, Steven T.; Huang, Xinqun; Cramer, Steven M. – Chemical Engineering Education, 2010
The commercial simulator Aspen Chromatography was employed to study and optimize an important new industrial separation process, weak partitioning chromatography. This case study on antibody purification was implemented in a chromatographic separations course. Parametric simulations were performed to investigate the effect of operating parameters…
Descriptors: Computer Simulation, Biotechnology, Problem Based Learning, Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Ali, Emad; Idriss, Arimiyawo – Chemical Engineering Education, 2009
Recently, chemical engineering education moves towards utilizing simulation soft wares to enhance the learning process especially in the field of process control. These training simulators provide interactive learning through visualization and practicing which will bridge the gap between the theoretical abstraction of textbooks and the…
Descriptors: Engineering Education, Chemical Engineering, Computer Simulation, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Clarke, Matthew A.; Giraldo, Carlos – Chemical Engineering Education, 2009
Chemical process simulation is one of the most fundamental skills that is expected from chemical engineers, yet relatively few graduates have the opportunity to learn, in depth, how a process simulator works, from programming the unit operations to the sequencing. The University of Calgary offers a "hands-on" postgraduate course in…
Descriptors: Computer Simulation, Chemical Engineering, Programming, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Vaidyanath, Sreeram; Williams, Jason; Hilliard, Marcus; Wiesner, Theodore – Chemical Engineering Education, 2007
Computer-simulated experiments offer many benefits to engineering curricula in the areas of safety, cost, and flexibility. We report our experience in developing and deploying a computer-simulated unit operations laboratory, driven by the guiding principle of maximum fidelity to the physical lab. We find that, while the up-front investment in…
Descriptors: Engineering Education, Laboratories, Computer Assisted Instruction, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Wankat, Phillip C. – Chemical Engineering Education, 2006
The commercial simulator Aspen Chromatography was used in the computer laboratory of a dual-level course. The lab assignments used a cookbook approach to teach basic simulator operation and open-ended exploration to understand adsorption. The students learned theory better than in previous years despite having less lecture time. Students agreed…
Descriptors: Chemical Engineering, Computer Simulation, Science Laboratories, Scientific Concepts
Peer reviewed Peer reviewed
Watson, Keith R.; And Others – Chemical Engineering Education, 1985
The determination of closed-loop response of processes containing dead-time is typically not covered in undergraduate process control, possibly because the solution by Laplace transforms requires the use of Pade approximation for dead-time, which makes the procedure lengthy and tedious. A computer-aided method is described which simplifies the…
Descriptors: Chemical Engineering, Computer Oriented Programs, Computer Simulation, Computer Software
Previous Page | Next Page ยป
Pages: 1  |  2