NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Chemical Engineering Education21
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 21 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Verrett, Jonathan; Boukouvala, Fani; Dowling, Alexander; Ulissi, Zachary; Zavala, Victor – Chemical Engineering Education, 2020
Computational notebooks are an increasingly common tool used to support student learning in a variety of contexts where computer programming can be applied. These notebooks provide an easily distributable method of displaying text and images, as well as sections of computer code that can be manipulated and run in real-time. This format allows…
Descriptors: Computer Science Education, Programming, Programming Languages, College Students
Peer reviewed Peer reviewed
Direct linkDirect link
Chapman, Kayla E.; Davidson, Megan E.; Liberatore, Matthew W. – Chemical Engineering Education, 2021
Student success and attempts on hundreds of online homework problems housed in a fully interactive online textbook, Material and Energy Balances zyBook, were studied over three cohorts of students (n=284). Auto-graded homework questions with randomized numbers and content can explore proficiency in the course material. Students are allowed to…
Descriptors: Energy, Homework, Science Instruction, Textbooks
Peer reviewed Peer reviewed
Direct linkDirect link
He, Q. Peter; Wang, Jin; Zhang, Rong; Johnson, Donald; Knight, Andrew; Polala, Ravali – Chemical Engineering Education, 2016
In view of potential demand for skilled engineers and competent researchers in the biofuels field, we have identified a significant gap between advanced biofuels research and undergraduate biofuels education in chemical engineering. To help bridge this gap, we created educational materials that systematically integrate biofuels technologies into…
Descriptors: Fuels, Teaching Methods, Researchers, Chemical Engineering
Peer reviewed Peer reviewed
Direct linkDirect link
Silverstein, David L.; Vigeant, Margot A. S. – Chemical Engineering Education, 2012
A survey of faculty teaching the chemical reaction engineering course or sequence during the 2009-2010 academic year at chemical engineering programs in the United States and Canada reveals change in terms of content, timing, and approaches to teaching. The report consists of two parts: first, a statistical and demographic characterization of the…
Descriptors: Chemistry, Chemical Engineering, Foreign Countries, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Harris, Andrew T. – Chemical Engineering Education, 2009
The University of Sydney has offered an undergraduate course in particle technology using a contemporary problem based learning (PBL) methodology since 2005. Student learning is developed through the solution of complex, open-ended problems drawn from modern chemical engineering practice. Two examples are presented; i) zero emission electricity…
Descriptors: Feedback (Response), Problem Based Learning, Course Evaluation, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Bullard, Lisa G.; Felder, Richard M. – Chemical Engineering Education, 2007
This two-part series describes the structure of the stoichiometry course at North Carolina State University. The course had a variety of learning objectives, and several nontraditional pedagogies were used in the course delivery. The first paper outlined the course structure and policies, the preparation given to the teaching assistants who played…
Descriptors: Course Content, Course Organization, Stoichiometry, Educational Objectives
Peer reviewed Peer reviewed
Lauffenburger, Douglas; And Others – Chemical Engineering Education, 1984
First year chemical engineering students are required to take a two-semester sequence in applied mathematics at the University of Pennsylvania, with the option of taking a third semester elective course. The content of the courses and the approaches used are discussed. A list of textbooks used is also provided. (JN)
Descriptors: Chemical Engineering, Course Content, Course Descriptions, Engineering Education
Peer reviewed Peer reviewed
Blanks, Robert F. – Chemical Engineering Education, 1979
A humanistic approach to teaching fluid mechanics is described which minimizes lecturing, increases professor-student interaction, uses group and individual problem solving sessions, and allows for student response. (BB)
Descriptors: Chemistry, Course Content, Engineering Education, Higher Education
Peer reviewed Peer reviewed
Shaeiwitz, Joseph A. – Chemical Engineering Education, 1983
A three or four semester-hour graduate course was designed to provide basic instruction in heat/mass transfer topics relevant to chemical engineering problems and to train students to develop mathematical descriptions for new situations encountered in problem-solving. Course outline and list of references used in the course are provided. (JM)
Descriptors: Chemical Engineering, Course Content, Course Descriptions, Engineering Education
Peer reviewed Peer reviewed
Davis, Mark E. – Chemical Engineering Education, 1983
Describes a two-quarter sequence of graduate courses in numerical methods and modeling for chemical engineers. Rationale, course content, methodology, topic development, and such course requirements as homework and design projects are considered. Emphasis is placed on the treatment of numerical methods implemented in commercial software. (JM)
Descriptors: Chemical Engineering, Computer Oriented Programs, Course Content, Course Descriptions
Peer reviewed Peer reviewed
Sather, Glenn A.; Coca, Jose – Chemical Engineering Education, 1988
Describes a summer course in chemical engineering. Includes discussions of the course program, course goals, student performance, and course faculty. Lists examples of informal experiments which have been used, and prerequisite courses that are required for students to enroll in the course. (CW)
Descriptors: Chemical Engineering, College Science, Course Content, Course Descriptions
Peer reviewed Peer reviewed
McCready, Mark J. – Chemical Engineering Education, 1989
A course where students were required to choose projects and provide studies of the feasibility, consumer need, and process design is discussed. Other projects such as advertising campaigns used to encourage student creativity are discussed. The need to keep second semester seniors interested is stressed. (MVL)
Descriptors: Chemical Engineering, Chemical Industry, Chemical Reactions, College Science
Peer reviewed Peer reviewed
Douglas, J. M.; Kirkwood, R. L. – Chemical Engineering Education, 1989
Discussed is a method to teach undergraduate students how to complete a conceptual design. Presents three tools to use: (1) how to use order-of-magnitude arguments to simplify problems, (2) how to derive design heuristics, and (3) how to decompose large problems into a set of small, simple problems. (Author/MVL)
Descriptors: Chemical Engineering, College Science, Course Content, Engineering
Peer reviewed Peer reviewed
Glandt, Eduardo D. – Chemical Engineering Education, 1988
Describes an engineering course for graduate study in random media. Summarizes random media as bulk properties of ordered and disordered two-phase materials. Gives course outline for one semester. Topics include: disordered systems, microstructure determination, survey of models, connectivity, and effective properties. (MVL)
Descriptors: College Science, Course Content, Course Descriptions, Course Objectives
Peer reviewed Peer reviewed
Valle-Riestra, J. Frank – Chemical Engineering Education, 1983
Describes a course designed to expose neophytes to methodology used in chemical process industries to evaluate commercial feasibility of proposed projects. Previously acquired disciplines are integrated to facilitate process synthesis, gain appreciation of nature of industrial projects and industrial viewpoint in managing them, and to become adept…
Descriptors: Chemical Engineering, Chemical Industry, Course Content, Course Descriptions
Previous Page | Next Page ยป
Pages: 1  |  2