Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 10 |
Descriptor
Source
Chemistry Education Research… | 10 |
Author
Publication Type
Journal Articles | 10 |
Reports - Research | 10 |
Tests/Questionnaires | 3 |
Education Level
Higher Education | 10 |
Postsecondary Education | 7 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Henry Matovu; Mihye Won; Roy Tasker; Mauro Mocerino; David Franklin Treagust; Dewi Ayu Kencana Ungu; Chin-Chung Tsai – Chemistry Education Research and Practice, 2025
Immersive Virtual Reality (iVR) can help students visualise and explore complex chemical concepts, such as protein enzyme structures and interactions. We designed a set of collaborative iVR-based learning tasks on the interaction between a protein enzyme and its substrate. We investigated how 18 pairs (36 students) in undergraduate chemistry…
Descriptors: Biochemistry, Science Education, Computer Simulation, Technology Uses in Education
Schwedler, Stefanie; Kaldewey, Marvin – Chemistry Education Research and Practice, 2020
Research in the past decades repeatedly revealed university students' struggles to properly understand physical chemistry concepts. In contrast to school, tertiary teaching relies heavily on the symbolic level, mainly applying abstract representations such as equations and diagrams. To follow the lessons and generate conceptual understanding,…
Descriptors: Chemistry, College Science, College Freshmen, Foreign Countries
Wu, Hoi-Ting; Mortezaei, Kiana; Alvelais, Teresa; Henbest, Grace; Murphy, Courtney; Yezierski, Ellen J.; Eichler, Jack F. – Chemistry Education Research and Practice, 2021
Implementation of the flipped classroom approach into STEM courses has been popularized in the last decade and has generally been reported to improve student performance outcomes. In a flipped classroom setting, students typically first encounter course content in the online format and subsequently engage in some form of active learning during the…
Descriptors: Flipped Classroom, STEM Education, Teaching Methods, Educational Technology
Minshall, Brianna L.; Yezierski, Ellen J. – Chemistry Education Research and Practice, 2021
For six semesters, activities have been incorporated into first year general chemistry courses in an effort to build student conceptual chemistry knowledge. The activities follow a learning cycle pedagogy (similar to Process Oriented Guided Inquiry Learning or POGIL activities) and consist of guiding questions involving animations, models,…
Descriptors: Science Instruction, Chemistry, Knowledge Level, Inquiry
Cole, Martin H.; Rosenthal, Deborah P.; Sanger, Michael J. – Chemistry Education Research and Practice, 2019
This paper describes two studies comparing students' explanations of an oxidation-reduction reaction after viewing the chemical demonstration and one of two different particulate-level computer animations. In the first study, the two animations differed primarily in the complexity of the visual images. Students viewing the more simplified…
Descriptors: Molecular Structure, Scientific Concepts, Chemistry, Science Instruction
Hunter, Vichuda; Hawkins, Ian; Phelps, Amy J. – Chemistry Education Research and Practice, 2019
A laboratory is a large investment of time and money for departments of chemistry yet discussions continue about its purpose in the educational process. Helping students navigate the three levels of representation; macroscopic, particulate and symbolic is a potential use of this time. This study looked at two different types of visualization for…
Descriptors: Science Laboratories, Chemistry, Energy, Visualization
Sweeder, Ryan D.; Herrington, Deborah G.; VandenPlas, Jessica R. – Chemistry Education Research and Practice, 2019
Simulations have changed chemistry education by allowing students to visualize the motion and interaction of particles underlying important chemical processes. With kinetics, such visualizations can illustrate how particles interact to yield successful reactions and how changes in concentration and temperature impact the number and success of…
Descriptors: Science Instruction, Chemistry, Kinetics, Scientific Concepts
Chamberlain, Julia M.; Lancaster, Kelly; Parson, Robert; Perkins, Katherine K. – Chemistry Education Research and Practice, 2014
We studied how students engaged with an interactive simulation in a classroom setting and how that engagement was affected by the design of a guiding activity. Students (n = 210) completed a written activity using an interactive simulation in second semester undergraduate general chemistry recitations. The same simulation--PhET Interactive…
Descriptors: Interaction, Undergraduate Students, Chemistry, College Science
Hawkins, Ian; Phelps, Amy J. – Chemistry Education Research and Practice, 2013
The use of virtual laboratories has become an increasing issue regarding science laboratories due to the increasing cost of hands-on laboratories, and the increase in distance education. Recent studies have looked at the use of virtual tools for laboratory to be used as supplements to the regular hands-on laboratories but many virtual tools have…
Descriptors: Science Laboratories, Simulated Environment, Computer Simulation, Educational Technology
Akaygun, Sevil; Jones, Loretta L. – Chemistry Education Research and Practice, 2013
Helping learners to visualize the structures and dynamics of particles through the use of technology is challenging. Animations and simulations can be difficult for learners to interpret and can even lead to new misconceptions. A systematic approach to development based on the findings of cognitive science was used to design, develop, and evaluate…
Descriptors: Chemistry, Computer Simulation, Science Instruction, Questionnaires