Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 20 |
Since 2006 (last 20 years) | 41 |
Descriptor
Bayesian Statistics | 41 |
Models | 34 |
Inferences | 12 |
Classification | 11 |
Probability | 9 |
Learning Processes | 8 |
Cognitive Processes | 7 |
Computation | 7 |
Prediction | 7 |
Causal Models | 6 |
Computational Linguistics | 6 |
More ▼ |
Source
Cognitive Science | 41 |
Author
Griffiths, Thomas L. | 5 |
Kalish, Michael L. | 2 |
Lee, Michael D. | 2 |
Lewandowsky, Stephan | 2 |
Lu, Hongjing | 2 |
Rafferty, Anna N. | 2 |
Vasishth, Shravan | 2 |
Adriaans, Frans | 1 |
Alicia M. Chen | 1 |
Alishahi, Afra | 1 |
Andrew Palacci | 1 |
More ▼ |
Publication Type
Journal Articles | 41 |
Reports - Research | 32 |
Reports - Evaluative | 7 |
Reports - Descriptive | 2 |
Education Level
Early Childhood Education | 1 |
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Alicia M. Chen; Andrew Palacci; Natalia Vélez; Robert D. Hawkins; Samuel J. Gershman – Cognitive Science, 2024
How do teachers learn about what learners already know? How do learners aid teachers by providing them with information about their background knowledge and what they find confusing? We formalize this collaborative reasoning process using a hierarchical Bayesian model of pedagogy. We then evaluate this model in two online behavioral experiments (N…
Descriptors: Bayesian Statistics, Models, Teaching Methods, Evaluation
Marchant, Nicolás; Quillien, Tadeg; Chaigneau, Sergio E. – Cognitive Science, 2023
The causal view of categories assumes that categories are represented by features and their causal relations. To study the effect of causal knowledge on categorization, researchers have used Bayesian causal models. Within that framework, categorization may be viewed as dependent on a likelihood computation (i.e., the likelihood of an exemplar with…
Descriptors: Classification, Bayesian Statistics, Causal Models, Evaluation Methods
Zheng, Rong; Busemeyer, Jerome R.; Nosofsky, Robert M. – Cognitive Science, 2023
Though individual categorization or decision processes have been studied separately in many previous investigations, few studies have investigated how they interact by using a two-stage task of first categorizing and then deciding. To address this issue, we investigated a categorization-decision task in two experiments. In both, participants were…
Descriptors: Classification, Decision Making, Task Analysis, Feedback (Response)
Zinszer, Benjamin D.; Rolotti, Sebi V.; Li, Fan; Li, Ping – Cognitive Science, 2018
Infant language learners are faced with the difficult inductive problem of determining how new words map to novel or known objects in their environment. Bayesian inference models have been successful at using the sparse information available in natural child-directed speech to build candidate lexicons and infer speakers' referential intentions. We…
Descriptors: Bayesian Statistics, Vocabulary Development, Bilingualism, Monolingualism
Kangasrääsiö, Antti; Jokinen, Jussi P. P.; Oulasvirta, Antti; Howes, Andrew; Kaski, Samuel – Cognitive Science, 2019
This paper addresses a common challenge with computational cognitive models: identifying parameter values that are both theoretically plausible and generate predictions that match well with empirical data. While computational models can offer deep explanations of cognition, they are computationally complex and often out of reach of traditional…
Descriptors: Inferences, Computation, Cognitive Processes, Models
Lloyd, Kevin; Sanborn, Adam; Leslie, David; Lewandowsky, Stephan – Cognitive Science, 2019
Algorithms for approximate Bayesian inference, such as those based on sampling (i.e., Monte Carlo methods), provide a natural source of models of how people may deal with uncertainty with limited cognitive resources. Here, we consider the idea that individual differences in working memory capacity (WMC) may be usefully modeled in terms of the…
Descriptors: Short Term Memory, Bayesian Statistics, Cognitive Ability, Individual Differences
Nicenboim, Bruno; Vasishth, Shravan; Engelmann, Felix; Suckow, Katja – Cognitive Science, 2018
Given the replication crisis in cognitive science, it is important to consider what researchers need to do in order to report results that are reliable. We consider three changes in current practice that have the potential to deliver more realistic and robust claims. First, the planned experiment should be divided into two stages, an exploratory…
Descriptors: Sentences, Case Studies, Cognitive Science, Psycholinguistics
Paape, Dario; Avetisyan, Serine; Lago, Sol; Vasishth, Shravan – Cognitive Science, 2021
We present computational modeling results based on a self-paced reading study investigating number attraction effects in Eastern Armenian. We implement three novel computational models of agreement attraction in a Bayesian framework and compare their predictive fit to the data using k-fold cross-validation. We find that our data are better…
Descriptors: Computational Linguistics, Indo European Languages, Grammar, Bayesian Statistics
McAnally, Ken; Davey, Catherine; White, Daniel; Stimson, Murray; Mascaro, Steven; Korb, Kevin – Cognitive Science, 2018
Situation awareness is a key construct in human factors and arises from a process of situation assessment (SA). SA comprises the perception of information, its integration with existing knowledge, the search for new information, and the prediction of the future state of the world, including the consequences of planned actions. Causal models…
Descriptors: Bayesian Statistics, Models, Air Transportation, Flight Training
Mayrhofer, Ralf; Waldmann, Michael R. – Cognitive Science, 2016
Research on human causal induction has shown that people have general prior assumptions about causal strength and about how causes interact with the background. We propose that these prior assumptions about the parameters of causal systems do not only manifest themselves in estimations of causal strength or the selection of causes but also when…
Descriptors: Causal Models, Bayesian Statistics, Inferences, Probability
Kastner, Itamar; Adriaans, Frans – Cognitive Science, 2018
Statistical learning is often taken to lie at the heart of many cognitive tasks, including the acquisition of language. One particular task in which probabilistic models have achieved considerable success is the segmentation of speech into words. However, these models have mostly been tested against English data, and as a result little is known…
Descriptors: Role, Phonemes, Contrastive Linguistics, English
Chen, Dawn; Lu, Hongjing; Holyoak, Keith J. – Cognitive Science, 2017
A key property of relational representations is their "generativity": From partial descriptions of relations between entities, additional inferences can be drawn about other entities. A major theoretical challenge is to demonstrate how the capacity to make generative inferences could arise as a result of learning relations from…
Descriptors: Inferences, Abstract Reasoning, Learning Processes, Models
Rafferty, Anna N.; Jansen, Rachel A.; Griffiths, Thomas L. – Cognitive Science, 2020
Online educational technologies offer opportunities for providing individualized feedback and detailed profiles of students' skills. Yet many technologies for mathematics education assess students based only on the correctness of either their final answers or responses to individual steps. In contrast, examining the choices students make for how…
Descriptors: Computer Assisted Testing, Mathematics Tests, Mathematics Skills, Student Evaluation
Rehder, Bob – Cognitive Science, 2017
This article assesses how people reason with categories whose features are related in causal cycles. Whereas models based on causal graphical models (CGMs) have enjoyed success modeling category-based judgments as well as a number of other cognitive phenomena, CGMs are only able to represent causal structures that are acyclic. A number of new…
Descriptors: Abstract Reasoning, Logical Thinking, Causal Models, Graphs
Roettger, Timo B.; Franke, Michael – Cognitive Science, 2019
Intonation plays an integral role in comprehending spoken language. Listeners can rapidly integrate intonational information to predictively map a given pitch accent onto the speaker's likely referential intentions. We use mouse tracking to investigate two questions: (a) how listeners draw predictive inferences based on information from…
Descriptors: Cues, Intonation, Language Processing, Speech Communication