Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 10 |
Descriptor
Source
Computer Science Education | 10 |
Author
Publication Type
Journal Articles | 10 |
Reports - Research | 6 |
Reports - Descriptive | 2 |
Information Analyses | 1 |
Reports - Evaluative | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 4 |
Secondary Education | 3 |
Elementary Education | 2 |
Junior High Schools | 2 |
Middle Schools | 2 |
Postsecondary Education | 2 |
Grade 6 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Intermediate Grades | 1 |
Audience
Location
California | 1 |
China | 1 |
Colombia | 1 |
Finland | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Huang, Joey; Parker, Miranda C. – Computer Science Education, 2023
Background and Context: Computational thinking (CT) is a critical part of computing education in middle school. The existing practices of collaboration and collaborative design activities at this education level pairs well with CT practices, but this interaction has previously been under-explored in the existing literature. Objective: In this…
Descriptors: Computation, Thinking Skills, Cooperative Learning, Skill Development
Pelánek, Radek; Effenberger, Tomáš – Computer Science Education, 2022
Background and Context: Block-based programming is a popular approach to teaching introductory programming. Block-based programming often works in the context of microworlds, where students solve specific puzzles. It is used, for example, within the Hour of Code event, which targets millions of students. Objective: To identify design guidelines…
Descriptors: Programming, Computer Science Education, Puzzles, Problem Solving
Xu, Zhen; Ritzhaupt, Albert D.; Umapathy, Karthikeyan; Ning, Yang; Tsai, Chin-Chung – Computer Science Education, 2021
Background and context: Researchers have been looking into the complexity of computer science (CS) education and tried to apply rigorous and relevant educational research methods to understand and facilitate the learning experience of students. Objective: The purpose of this study was to explore college students' conceptions of learning CS to shed…
Descriptors: College Students, Student Attitudes, Computer Science Education, Freehand Drawing
Espinal, Alejandro; Vieira, Camilo; Guerrero-Bequis, Valeria – Computer Science Education, 2023
Background and context: Transfer is a process where students apply their learning to different contexts. This process includes using their knowledge to solve problems with similar complexity, and in new contexts. In the context of programming, transfer also includes being able to understand and use different programming languages. Objective: This…
Descriptors: Block Scheduling, Computer Science Education, Programming Languages, Coding
Huang, Wendy; Looi, Chee-Kit – Computer Science Education, 2021
Background and Context: Computational thinking (CT) is considered as a valuable literacy for all students, and its inclusion in compulsory schooling could increase the numbers of underrepresented students who pursue computing-related careers. Computer Science Unplugged (CSU) had success in making computer science (CS) accessible to K-12 students…
Descriptors: Computer Science Education, Programming, Thinking Skills, Skill Development
Grover, Shuchi; Jackiw, Nicholas; Lundh, Patrik – Computer Science Education, 2019
Background and Context: Learners struggle with conceptual understanding of introductory programming concepts such as variables, expressions, and loops. Objective: We examine whether and how designed activities for conceptual exploration support preliminary engagement with and learning of foundational and often hard-to-grasp programming concepts…
Descriptors: Middle School Students, Concept Formation, Learning Activities, Grade 6
Bennedsen, Jens; Caspersen, Michael E. – Computer Science Education, 2012
Programming is recognised as one of seven grand challenges in computing education and attracts much attention in computing education research. Most research in the area concerns teaching methods, educational technology and student understanding/misconceptions. Typically, evaluation of learning outcome takes place during or immediately following…
Descriptors: Computer Science Education, Research, Programming, Skills
Titterton, Nathaniel; Lewis, Colleen M.; Clancy, Michael J. – Computer Science Education, 2010
Lab-centric instruction emphasizes supervised, hands-on activities by substituting lab for lecture time. It combines a multitude of pedagogical techniques into the format of an extended, structured closed lab. We discuss the range of benefits for students, including increased staff interaction, frequent and varied self-assessments, integrated…
Descriptors: Learning Activities, Computer Assisted Instruction, Mathematics Instruction, Lecture Method
Thota, Neena; Whitfield, Richard – Computer Science Education, 2010
This article describes a holistic approach to designing an introductory, object-oriented programming course. The design is grounded in constructivism and pedagogy of phenomenography. We use constructive alignment as the framework to align assessments, learning, and teaching with planned learning outcomes. We plan learning and teaching activities,…
Descriptors: Constructivism (Learning), Undergraduate Students, Investigations, Action Research
McCormick, John W. – Computer Science Education, 2007
Less than one half of one percent of all processors manufactured today end up in computers. The rest are embedded in other devices such as automobiles, airplanes, trains, satellites, and nearly every modern electronic device. Developing software for embedded systems requires a greater knowledge of hardware than developing for a typical desktop…
Descriptors: Computer System Design, Learning Activities, Relevance (Education), Computer Software