Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 5 |
Descriptor
Bayesian Statistics | 5 |
Simulation | 5 |
Markov Processes | 4 |
Evaluation Methods | 3 |
Models | 3 |
Computation | 2 |
Learning Processes | 2 |
Monte Carlo Methods | 2 |
Probability | 2 |
Robustness (Statistics) | 2 |
Statistical Analysis | 2 |
More ▼ |
Source
ETS Research Report Series | 5 |
Author
Almond, Russell G. | 2 |
Fu, Jianbin | 1 |
Hartz, Sarah | 1 |
Hemat, Lisa A. | 1 |
Mavronikolas, Elia | 1 |
Mulder, Joris | 1 |
Roussos, Louis | 1 |
Yan, Duanli | 1 |
Zapata, Diego | 1 |
Zwick, Rebecca | 1 |
Publication Type
Journal Articles | 5 |
Reports - Research | 5 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Fu, Jianbin; Zapata, Diego; Mavronikolas, Elia – ETS Research Report Series, 2014
Simulation or game-based assessments produce outcome data and process data. In this article, some statistical models that can potentially be used to analyze data from simulation or game-based assessments are introduced. Specifically, cognitive diagnostic models that can be used to estimate latent skills from outcome data so as to scale these…
Descriptors: Simulation, Evaluation Methods, Games, Data Collection
Zwick, Rebecca – ETS Research Report Series, 2012
Differential item functioning (DIF) analysis is a key component in the evaluation of the fairness and validity of educational tests. The goal of this project was to review the status of ETS DIF analysis procedures, focusing on three aspects: (a) the nature and stringency of the statistical rules used to flag items, (b) the minimum sample size…
Descriptors: Test Bias, Sample Size, Bayesian Statistics, Evaluation Methods
Almond, Russell G. – ETS Research Report Series, 2007
Over the course of instruction, instructors generally collect a great deal of information about each student. Integrating that information intelligently requires models for how a student's proficiency changes over time. Armed with such models, instructors can "filter" the data--more accurately estimate the student's current proficiency…
Descriptors: Markov Processes, Decision Making, Student Evaluation, Learning Processes
Almond, Russell G.; Mulder, Joris; Hemat, Lisa A.; Yan, Duanli – ETS Research Report Series, 2006
Bayesian network models offer a large degree of flexibility for modeling dependence among observables (item outcome variables) from the same task that may be dependent. This paper explores four design patterns for modeling locally dependent observations from the same task: (1) No context--Ignore dependence among observables; (2) Compensatory…
Descriptors: Bayesian Statistics, Networks, Models, Design
Hartz, Sarah; Roussos, Louis – ETS Research Report Series, 2008
This paper presents the development of the fusion model skills diagnosis system (fusion model system), which can help integrate standardized testing into the learning process with both skills-level examinee parameters for modeling examinee skill mastery and skills-level item parameters, giving information about the diagnostic power of the test.…
Descriptors: Skill Development, Educational Diagnosis, Theory Practice Relationship, Standardized Tests