NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
PDF on ERIC Download full text
ERIC Number: EJ1220384
Record Type: Journal
Publication Date: 2019
Pages: 15
Abstractor: As Provided
ISBN: N/A
ISSN: EISSN-2227-7102
EISSN: N/A
Available Date: N/A
Predicting Learning Outcomes with MOOC Clickstreams
Yu, Chen-Hsiang; Wu, Jungpin; Liu, An-Chi
Education Sciences, v9 Article 104 2019
Massive Open Online Courses (MOOCs) have gradually become a dominant trend in education. Since 2014, the Ministry of Education in Taiwan has been promoting MOOC programs, with successful results. The ability of students to work at their own pace, however, is associated with low MOOC completion rates and has recently become a focus. The development of a mechanism to effectively improve course completion rates continues to be of great interest to both teachers and researchers. This study established a series of learning behaviors using the video clickstream records of students, through a MOOC platform, to identify seven types of cognitive participation models of learners. We subsequently built practical machine learning models by using K-nearest neighbor (KNN), support vector machines (SVM), and artificial neural network (ANN) algorithms to predict students' learning outcomes via their learning behaviors. The ANN machine learning method had the highest prediction accuracy. Based on the prediction results, we saw a correlation between video viewing behavior and learning outcomes. This could allow teachers to help students needing extra support successfully pass the course. To further improve our method, we classified the course videos based on their content. There were three video categories: theoretical, experimental, and analytic. Different prediction models were built for each of these three video types and their combinations. We performed the accuracy verification; our experimental results showed that we could use only theoretical and experimental video data, instead of all three types of data, to generate prediction models without significant differences in prediction accuracy. In addition to data reduction in model generation, this could help teachers evaluate the effectiveness of course videos.
MDPI AG. Klybeckstrasse 64, 4057 Basel, Switzerland. Tel: e-mail: indexing@mdpi.com; Web site: http://www.mdpi.com
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: N/A
Sponsor: N/A
Authoring Institution: N/A
Identifiers - Location: Taiwan
Grant or Contract Numbers: N/A
Author Affiliations: N/A