NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Balti, Rihab; Hedhili, Aroua; Chaari, Wided Lejouad; Abed, Mourad – Education and Information Technologies, 2023
Since the COVID pandemic, universities propose online education to ensure learning continuity. However, the insufficient preparation led to a major drop in the learner's performance and his/her dissatisfaction with the learning experience. This may be due to several reasons, including the insensitivity of the virtual learning environment to the…
Descriptors: Cognitive Style, Pandemics, COVID-19, Distance Education
Peer reviewed Peer reviewed
Direct linkDirect link
Missaoui, Siwar; Maalel, Ahmed – Education and Information Technologies, 2021
A student's profile defines the best way a student chooses to learn. It comprises information on student's characteristics such as background knowledge, learning style preference, goals, personality etc. The foremost challenge that the students experience in learning system is that they are unable to bring back relevant information based on their…
Descriptors: Profiles, Models, Computer Games, Cognitive Style
Peer reviewed Peer reviewed
Direct linkDirect link
El Aissaoui, Ouafae; El Alami El Madani, Yasser; Oughdir, Lahcen; El Allioui, Youssouf – Education and Information Technologies, 2019
Adaptive E-learning platforms provide personalized learning process relying mainly on learning styles. The traditional approach to find learning styles depends on asking learners to self-evaluate their own attitudes and behaviors through surveys and questionnaires. This approach presents several weaknesses including the lack of self-awareness of…
Descriptors: Classification, Cognitive Style, Models, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Sabitha, A. Sai; Mehrotra, Deepti; Bansal, Abhay – Education and Information Technologies, 2017
Currently the challenges in e-Learning are converging the learning content from various sources and managing them within e-learning practices. Data mining learning algorithms can be used and the contents can be converged based on the Metadata of the objects. Ensemble methods use multiple learning algorithms and it can be used to converge the…
Descriptors: Electronic Learning, Metadata, Computer System Design, Design Preferences