Publication Date
In 2025 | 3 |
Since 2024 | 10 |
Since 2021 (last 5 years) | 16 |
Since 2016 (last 10 years) | 20 |
Since 2006 (last 20 years) | 20 |
Descriptor
Classification | 20 |
Prediction | 20 |
Artificial Intelligence | 12 |
Models | 11 |
Academic Achievement | 8 |
Learning Analytics | 7 |
Accuracy | 6 |
Algorithms | 6 |
Decision Making | 5 |
Higher Education | 4 |
At Risk Students | 3 |
More ▼ |
Source
Education and Information… | 20 |
Author
Abdullahi Yusuf | 1 |
Adadi, Amina | 1 |
Alian, Marwah | 1 |
Anagha Ani | 1 |
Anand Nayyar | 1 |
Azzi, Ibtissam | 1 |
Balqis Albreiki | 1 |
Belkacem Chikhaoui | 1 |
Caihong Feng | 1 |
Dalia Khairy | 1 |
Dardor, Mohamed | 1 |
More ▼ |
Publication Type
Journal Articles | 20 |
Reports - Research | 18 |
Information Analyses | 2 |
Education Level
Higher Education | 9 |
Postsecondary Education | 9 |
Audience
Location
California | 1 |
Canada | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Caihong Feng; Jingyu Liu; Jianhua Wang; Yunhong Ding; Weidong Ji – Education and Information Technologies, 2025
Student academic performance prediction is a significant area of study in the realm of education that has drawn the interest and investigation of numerous scholars. The current approaches for student academic performance prediction mainly rely on the educational information provided by educational system, ignoring the information on students'…
Descriptors: Academic Achievement, Prediction, Models, Student Behavior
Kajal Mahawar; Punam Rattan – Education and Information Technologies, 2025
Higher education institutions have consistently strived to provide students with top-notch education. To achieve better outcomes, machine learning (ML) algorithms greatly simplify the prediction process. ML can be utilized by academicians to obtain insight into student data and mine data for forecasting the performance. In this paper, the authors…
Descriptors: Electronic Learning, Artificial Intelligence, Academic Achievement, Prediction
Anagha Ani; Ean Teng Khor – Education and Information Technologies, 2024
Predictive modelling in the education domain can be utilised to significantly improve teaching and learning experiences. Massive Open Online Courses (MOOCs) generate a large volume of data that can be exploited to predict and evaluate student performance based on various factors. This paper has two broad aims. Firstly, to develop and tune several…
Descriptors: MOOCs, Classification, Artificial Intelligence, Prediction
Hayat Sahlaoui; El Arbi Abdellaoui Alaoui; Said Agoujil; Anand Nayyar – Education and Information Technologies, 2024
Predicting student performance using educational data is a significant area of machine learning research. However, class imbalance in datasets and the challenge of developing interpretable models can hinder accuracy. This study compares different variations of the Synthetic Minority Oversampling Technique (SMOTE) combined with classification…
Descriptors: Sampling, Classification, Algorithms, Prediction
Meriem Zerkouk; Miloud Mihoubi; Belkacem Chikhaoui; Shengrui Wang – Education and Information Technologies, 2024
School dropout is a significant issue in distance learning, and early detection is crucial for addressing the problem. Our study aims to create a binary classification model that anticipates students' activity levels based on their current achievements and engagement on a Canadian Distance learning Platform. Predicting student dropout, a common…
Descriptors: Artificial Intelligence, Dropouts, Prediction, Distance Education
Sghir, Nabila; Adadi, Amina; Lahmer, Mohammed – Education and Information Technologies, 2023
The last few years have witnessed an upsurge in the number of studies using Machine and Deep learning models to predict vital academic outcomes based on different kinds and sources of student-related data, with the goal of improving the learning process from all perspectives. This has led to the emergence of predictive modelling as a core practice…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, Data Collection
Abdullahi Yusuf; Norah Md Noor; Shamsudeen Bello – Education and Information Technologies, 2024
Studies examining students' learning behavior predominantly employed rich video data as their main source of information due to the limited knowledge of computer vision and deep learning algorithms. However, one of the challenges faced during such observation is the strenuous task of coding large amounts of video data through repeated viewings. In…
Descriptors: Learning Analytics, Student Behavior, Video Technology, Classification
Dalia Khairy; Nouf Alharbi; Mohamed A. Amasha; Marwa F. Areed; Salem Alkhalaf; Rania A. Abougalala – Education and Information Technologies, 2024
Student outcomes are of great importance in higher education institutions. Accreditation bodies focus on them as an indicator to measure the performance and effectiveness of the institution. Forecasting students' academic performance is crucial for every educational establishment seeking to enhance performance and perseverance of its students and…
Descriptors: Prediction, Tests, Scores, Information Retrieval
Nesrine Mansouri; Mourad Abed; Makram Soui – Education and Information Technologies, 2024
Selecting undergraduate majors or specializations is a crucial decision for students since it considerably impacts their educational and career paths. Moreover, their decisions should match their academic background, interests, and goals to pursue their passions and discover various career paths with motivation. However, such a decision remains…
Descriptors: Undergraduate Students, Decision Making, Majors (Students), Specialization
Balqis Albreiki; Tetiana Habuza; Nishi Palakkal; Nazar Zaki – Education and Information Technologies, 2024
The nature of education has been transformed by technological advances and online learning platforms, providing educational institutions with more options than ever to thrive in a complex and competitive environment. However, they still face challenges such as academic underachievement, graduation delays, and student dropouts. Fortunately, by…
Descriptors: Multivariate Analysis, Graphs, Identification, At Risk Students
Lwande, Charles; Oboko, Robert; Muchemi, Lawrence – Education and Information Technologies, 2021
Learning Management Systems (LMS) lack automated intelligent components that analyze data and classify learners in terms of their respective characteristics. Manual methods involving administering questionnaires related to a specific learning style model and cognitive psychometric tests have been used to identify such behavior. The problem with…
Descriptors: Integrated Learning Systems, Student Behavior, Prediction, Artificial Intelligence
Sackstein, Suzanne; Matthee, Machdel; Weilbach, Lizette – Education and Information Technologies, 2023
Research that employs theory provides a framework and structure in which complex phenomenon, can be understood. While many theories have been developed to study people's technology usage, the plurality of perspectives offered are complex to navigate due to the diverse range of problems and topics addressed and the varied theoretical foundations…
Descriptors: Educational Theories, Models, Technology Uses in Education, Hermeneutics
Korchi, Adil; Dardor, Mohamed; Mabrouk, El Houssine – Education and Information Technologies, 2020
Learning techniques have proven their capacity to treat large amount of data. Most statistical learning approaches use specific size learning sets and create static models. Withal, in certain some situations such as incremental or active learning the learning process can work with only a smal amount of data. In this case, the search for algorithms…
Descriptors: Learning Analytics, Data, Computation, Mathematics
Azzi, Ibtissam; Jeghal, Adil; Radouane, Abdelhay; Yahyaouy, Ali; Tairi, Hamid – Education and Information Technologies, 2020
In E-Learning Systems, the automatic detection of the learners' learning styles provides a concrete way for instructors to personalize the learning to be made available to learners. The classification techniques are the most used techniques to automatically detect the learning styles by processing data coming from learner interactions with the…
Descriptors: Classification, Prediction, Identification, Cognitive Style
MD, Soumya; Krishnamoorthy, Shivsubramani – Education and Information Technologies, 2022
In recent times, Educational Data Mining and Learning Analytics have been abundantly used to model decision-making to improve teaching/learning ecosystems. However, the adaptation of student models in different domains/courses needs a balance between the generalization and context specificity to reduce the redundancy in creating domain-specific…
Descriptors: Predictor Variables, Academic Achievement, Higher Education, Learning Analytics
Previous Page | Next Page ยป
Pages: 1 | 2