NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Mangino, Anthony A.; Finch, W. Holmes – Educational and Psychological Measurement, 2021
Oftentimes in many fields of the social and natural sciences, data are obtained within a nested structure (e.g., students within schools). To effectively analyze data with such a structure, multilevel models are frequently employed. The present study utilizes a Monte Carlo simulation to compare several novel multilevel classification algorithms…
Descriptors: Prediction, Hierarchical Linear Modeling, Classification, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Bolin, Jocelyn H.; Finch, W. Holmes; Stenger, Rachel – Educational and Psychological Measurement, 2019
Multilevel data are a reality for many disciplines. Currently, although multiple options exist for the treatment of multilevel data, most disciplines strictly adhere to one method for multilevel data regardless of the specific research design circumstances. The purpose of this Monte Carlo simulation study is to compare several methods for the…
Descriptors: Hierarchical Linear Modeling, Computation, Statistical Analysis, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Park, Jungkyu; Yu, Hsiu-Ting – Educational and Psychological Measurement, 2016
The multilevel latent class model (MLCM) is a multilevel extension of a latent class model (LCM) that is used to analyze nested structure data structure. The nonparametric version of an MLCM assumes a discrete latent variable at a higher-level nesting structure to account for the dependency among observations nested within a higher-level unit. In…
Descriptors: Hierarchical Linear Modeling, Nonparametric Statistics, Data Analysis, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Min; Lin, Tsung-I – Educational and Psychological Measurement, 2014
A challenge associated with traditional mixture regression models (MRMs), which rest on the assumption of normally distributed errors, is determining the number of unobserved groups. Specifically, even slight deviations from normality can lead to the detection of spurious classes. The current work aims to (a) examine how sensitive the commonly…
Descriptors: Regression (Statistics), Evaluation Methods, Indexes, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Qiu; Diemer, Matthew A.; Maier, Kimberly S. – Educational and Psychological Measurement, 2013
This study integrated Bayesian hierarchical modeling and receiver operating characteristic analysis (BROCA) to evaluate how interest strength (IS) and interest differentiation (ID) predicted low–socioeconomic status (SES) youth's interest-major congruence (IMC). Using large-scale Kuder Career Search online-assessment data, this study fit three…
Descriptors: Bayesian Statistics, Socioeconomic Status, Student Interests, Gender Differences
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Hung-Yu; Wang, Wen-Chung – Educational and Psychological Measurement, 2014
In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…
Descriptors: Item Response Theory, Hierarchical Linear Modeling, Computation, Test Reliability