Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 9 |
Descriptor
Correlation | 9 |
Statistical Inference | 9 |
Computation | 6 |
Monte Carlo Methods | 5 |
Sampling | 5 |
Statistical Analysis | 5 |
Error of Measurement | 4 |
Sample Size | 4 |
Simulation | 3 |
Statistical Bias | 3 |
Comparative Analysis | 2 |
More ▼ |
Source
Educational and Psychological… | 9 |
Author
Padilla, Miguel A. | 2 |
Veprinsky, Anna | 2 |
Algina, James | 1 |
Bishara, Anthony J. | 1 |
Chan, Wai | 1 |
Crede, Marcus | 1 |
Gonzalez, Oscar | 1 |
Hittner, James B. | 1 |
Huang, Francis L. | 1 |
James Ohisei Uanhoro | 1 |
Keselman, H. J. | 1 |
More ▼ |
Publication Type
Journal Articles | 9 |
Reports - Research | 8 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
James Ohisei Uanhoro – Educational and Psychological Measurement, 2024
Accounting for model misspecification in Bayesian structural equation models is an active area of research. We present a uniquely Bayesian approach to misspecification that models the degree of misspecification as a parameter--a parameter akin to the correlation root mean squared residual. The misspecification parameter can be interpreted on its…
Descriptors: Bayesian Statistics, Structural Equation Models, Simulation, Statistical Inference
Valente, Matthew J.; Gonzalez, Oscar; Miocevic, Milica; MacKinnon, David P. – Educational and Psychological Measurement, 2016
Methods to assess the significance of mediated effects in education and the social sciences are well studied and fall into two categories: single sample methods and computer-intensive methods. A popular single sample method to detect the significance of the mediated effect is the test of joint significance, and a popular computer-intensive method…
Descriptors: Structural Equation Models, Sampling, Statistical Inference, Statistical Bias
Huang, Francis L. – Educational and Psychological Measurement, 2018
Cluster randomized trials involving participants nested within intact treatment and control groups are commonly performed in various educational, psychological, and biomedical studies. However, recruiting and retaining intact groups present various practical, financial, and logistical challenges to evaluators and often, cluster randomized trials…
Descriptors: Multivariate Analysis, Sampling, Statistical Inference, Data Analysis
Padilla, Miguel A.; Veprinsky, Anna – Educational and Psychological Measurement, 2014
Correlation attenuation due to measurement error and a corresponding correction, the deattenuated correlation, have been known for over a century. Nevertheless, the deattenuated correlation remains underutilized. A few studies in recent years have investigated factors affecting the deattenuated correlation, and a couple of them provide alternative…
Descriptors: Correlation, Sampling, Statistical Inference, Computation
Bishara, Anthony J.; Hittner, James B. – Educational and Psychological Measurement, 2015
It is more common for educational and psychological data to be nonnormal than to be approximately normal. This tendency may lead to bias and error in point estimates of the Pearson correlation coefficient. In a series of Monte Carlo simulations, the Pearson correlation was examined under conditions of normal and nonnormal data, and it was compared…
Descriptors: Research Methodology, Monte Carlo Methods, Correlation, Simulation
Padilla, Miguel A.; Veprinsky, Anna – Educational and Psychological Measurement, 2012
Issues with correlation attenuation due to measurement error are well documented. More than a century ago, Spearman proposed a correction for attenuation. However, this correction has seen very little use since it can potentially inflate the true correlation beyond one. In addition, very little confidence interval (CI) research has been done for…
Descriptors: Correlation, Error of Measurement, Sampling, Statistical Inference
Algina, James; Keselman, H. J.; Penfield, Randall D. – Educational and Psychological Measurement, 2010
The increase in the squared multiple correlation coefficient ([delta]R[superscript 2]) associated with a variable in a regression equation is a commonly used measure of importance in regression analysis. Algina, Keselman, and Penfield found that intervals based on asymptotic principles were typically very inaccurate, even though the sample size…
Descriptors: Computation, Statistical Analysis, Correlation, Statistical Inference
Crede, Marcus – Educational and Psychological Measurement, 2010
Random responding to psychological inventories is a long-standing concern among clinical practitioners and researchers interested in interpreting idiographic data, but it is typically viewed as having only a minor impact on the statistical inferences drawn from nomothetic data. This article explores the impact of random responding on the size and…
Descriptors: Effect Size, Validity, Computation, Correlation
Chan, Wai – Educational and Psychological Measurement, 2009
A typical question in multiple regression analysis is to determine if a set of predictors gives the same degree of predictor power in two different populations. Olkin and Finn (1995) proposed two asymptotic-based methods for testing the equality of two population squared multiple correlations, [rho][superscript 2][subscript 1] and…
Descriptors: Multiple Regression Analysis, Intervals, Correlation, Computation