Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 16 |
Descriptor
Data Analysis | 27 |
Models | 14 |
Mathematical Models | 8 |
Evaluation Methods | 6 |
Correlation | 5 |
Factor Analysis | 5 |
Comparative Analysis | 4 |
Error of Measurement | 4 |
Goodness of Fit | 4 |
Maximum Likelihood Statistics | 4 |
Simulation | 4 |
More ▼ |
Source
Educational and Psychological… | 27 |
Author
Publication Type
Journal Articles | 22 |
Reports - Research | 16 |
Reports - Evaluative | 4 |
Reports - Descriptive | 1 |
Education Level
Grade 3 | 2 |
Grade 6 | 2 |
Higher Education | 2 |
Early Childhood Education | 1 |
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Grade 4 | 1 |
Grade 5 | 1 |
Intermediate Grades | 1 |
Kindergarten | 1 |
Middle Schools | 1 |
More ▼ |
Audience
Location
Africa | 1 |
Asia | 1 |
Hawaii | 1 |
United States | 1 |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
Learning and Study Strategies… | 1 |
Raven Advanced Progressive… | 1 |
Torrance Tests of Creative… | 1 |
What Works Clearinghouse Rating
Engelhard, George – Educational and Psychological Measurement, 2023
The purpose of this study is to introduce a functional approach for modeling unfolding response data. Functional data analysis (FDA) has been used for examining cumulative item response data, but a functional approach has not been systematically used with unfolding response processes. A brief overview of FDA is presented and illustrated within the…
Descriptors: Data Analysis, Models, Responses, Test Items
Schweizer, Karl; Gold, Andreas; Krampen, Dorothea – Educational and Psychological Measurement, 2023
In modeling missing data, the missing data latent variable of the confirmatory factor model accounts for systematic variation associated with missing data so that replacement of what is missing is not required. This study aimed at extending the modeling missing data approach to tetrachoric correlations as input and at exploring the consequences of…
Descriptors: Data, Models, Factor Analysis, Correlation
Zopluoglu, Cengiz – Educational and Psychological Measurement, 2020
A mixture extension of Samejima's continuous response model for continuous measurement outcomes and its estimation through a heuristic approach based on limited-information factor analysis is introduced. Using an empirical data set, it is shown that two groups of respondents that differ both qualitatively and quantitatively in their response…
Descriptors: Item Response Theory, Measurement, Models, Heuristics
Ziying Li; A. Corinne Huggins-Manley; Walter L. Leite; M. David Miller; Eric A. Wright – Educational and Psychological Measurement, 2022
The unstructured multiple-attempt (MA) item response data in virtual learning environments (VLEs) are often from student-selected assessment data sets, which include missing data, single-attempt responses, multiple-attempt responses, and unknown growth ability across attempts, leading to a complex and complicated scenario for using this kind of…
Descriptors: Sequential Approach, Item Response Theory, Data, Simulation
Grice, James W.; Yepez, Maria; Wilson, Nicole L.; Shoda, Yuichi – Educational and Psychological Measurement, 2017
An alternative to null hypothesis significance testing is presented and discussed. This approach, referred to as observation-oriented modeling, is centered on model building in an effort to explicate the structures and processes believed to generate a set of observations. In terms of analysis, this novel approach complements traditional methods…
Descriptors: Hypothesis Testing, Models, Observation, Statistical Inference
Marland, Joshua; Harrick, Matthew; Sireci, Stephen G. – Educational and Psychological Measurement, 2020
Student assessment nonparticipation (or opt out) has increased substantially in K-12 schools in states across the country. This increase in opt out has the potential to impact achievement and growth (or value-added) measures used for educator and institutional accountability. In this simulation study, we investigated the extent to which…
Descriptors: Value Added Models, Teacher Effectiveness, Teacher Evaluation, Elementary Secondary Education
McNeish, Daniel; Harring, Jeffrey R. – Educational and Psychological Measurement, 2017
To date, small sample problems with latent growth models (LGMs) have not received the amount of attention in the literature as related mixed-effect models (MEMs). Although many models can be interchangeably framed as a LGM or a MEM, LGMs uniquely provide criteria to assess global data-model fit. However, previous studies have demonstrated poor…
Descriptors: Growth Models, Goodness of Fit, Error Correction, Sampling
Raykov, Tenko; Marcoulides, George A. – Educational and Psychological Measurement, 2014
This research note contributes to the discussion of methods that can be used to identify useful auxiliary variables for analyses of incomplete data sets. A latent variable approach is discussed, which is helpful in finding auxiliary variables with the property that if included in subsequent maximum likelihood analyses they may enhance considerably…
Descriptors: Data Analysis, Identification, Maximum Likelihood Statistics, Statistical Analysis
Raykov, Tenko; Lee, Chun-Lung; Marcoulides, George A.; Chang, Chi – Educational and Psychological Measurement, 2013
The relationship between saturated path-analysis models and their fit to data is revisited. It is demonstrated that a saturated model need not fit perfectly or even well a given data set when fit to the raw data is examined, a criterion currently frequently overlooked by researchers utilizing path analysis modeling techniques. The potential of…
Descriptors: Structural Equation Models, Goodness of Fit, Path Analysis, Correlation
Liu, Min; Lin, Tsung-I – Educational and Psychological Measurement, 2014
A challenge associated with traditional mixture regression models (MRMs), which rest on the assumption of normally distributed errors, is determining the number of unobserved groups. Specifically, even slight deviations from normality can lead to the detection of spurious classes. The current work aims to (a) examine how sensitive the commonly…
Descriptors: Regression (Statistics), Evaluation Methods, Indexes, Models
McArdle, John J.; Hamagami, Fumiaki; Bautista, Randy; Onoye, Jane; Hishinuma, Earl S.; Prescott, Carol A.; Takeshita, Junji; Zonderman, Alan B.; Johnson, Ronald C. – Educational and Psychological Measurement, 2014
In this study, we reanalyzed the classic Hawai'i Family Study of Cognition (HFSC) data using contemporary multilevel modeling techniques. We used the HFSC baseline data ("N" = 6,579) and reexamined the factorial structure of 16 cognitive variables using confirmatory (restricted) measurement models in an explicit sequence. These models…
Descriptors: Factor Analysis, Hierarchical Linear Modeling, Data Analysis, Structural Equation Models
Ligtvoet, Rudy; van der Ark, L. Andries; te Marvelde, Janneke M.; Sijtsma, Klaas – Educational and Psychological Measurement, 2010
This article discusses the concept of an invariant item ordering (IIO) for polytomously scored items and proposes methods for investigating an IIO in real test data. Method manifest IIO is proposed for assessing whether item response functions intersect. Coefficient H[superscript T] is defined for polytomously scored items. Given that an IIO…
Descriptors: Item Response Theory, Data Analysis, Evaluation Methods, Scoring
Ng, Kok-Mun; Wang, Chuang; Kim, Do-Hong; Bodenhorn, Nancy – Educational and Psychological Measurement, 2010
The authors investigated the factor structure of the Schutte Self-Report Emotional Intelligence (SSREI) scale on international students. Via confirmatory factor analysis, the authors tested the fit of the models reported by Schutte et al. and five other studies to data from 640 international students in the United States. Results show that…
Descriptors: Emotional Intelligence, Factor Structure, Measures (Individuals), Factor Analysis
Holden, Jocelyn E.; Kelley, Ken – Educational and Psychological Measurement, 2010
Classification procedures are common and useful in behavioral, educational, social, and managerial research. Supervised classification techniques such as discriminant function analysis assume training data are perfectly classified when estimating parameters or classifying. In contrast, unsupervised classification techniques such as finite mixture…
Descriptors: Discriminant Analysis, Classification, Computation, Behavioral Science Research

MacIntosh, Randall – Educational and Psychological Measurement, 1997
Presents KANT, a FORTRAN 77 software program that tests assumptions of multivariate normality in a data set. Based on the test developed by M. V. Mardia (1985), the KANT program is useful for those engaged in structural equation modeling with latent variables. (SLD)
Descriptors: Computer Software, Data Analysis, Structural Equation Models
Previous Page | Next Page ยป
Pages: 1 | 2