NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sijia Huang; Dubravka Svetina Valdivia – Educational and Psychological Measurement, 2024
Identifying items with differential item functioning (DIF) in an assessment is a crucial step for achieving equitable measurement. One critical issue that has not been fully addressed with existing studies is how DIF items can be detected when data are multilevel. In the present study, we introduced a Lord's Wald X[superscript 2] test-based…
Descriptors: Item Analysis, Item Response Theory, Algorithms, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Cox, Kyle; Kelcey, Benjamin – Educational and Psychological Measurement, 2023
Multilevel structural equation models (MSEMs) are well suited for educational research because they accommodate complex systems involving latent variables in multilevel settings. Estimation using Croon's bias-corrected factor score (BCFS) path estimation has recently been extended to MSEMs and demonstrated promise with limited sample sizes. This…
Descriptors: Structural Equation Models, Educational Research, Hierarchical Linear Modeling, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Akaeze, Hope O.; Lawrence, Frank R.; Wu, Jamie Heng-Chieh – Educational and Psychological Measurement, 2023
Multidimensionality and hierarchical data structure are common in assessment data. These design features, if not accounted for, can threaten the validity of the results and inferences generated from factor analysis, a method frequently employed to assess test dimensionality. In this article, we describe and demonstrate the application of the…
Descriptors: Measures (Individuals), Multidimensional Scaling, Tests, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Cho, Sun-Joo; Preacher, Kristopher J. – Educational and Psychological Measurement, 2016
Multilevel modeling (MLM) is frequently used to detect cluster-level group differences in cluster randomized trial and observational studies. Group differences on the outcomes (posttest scores) are detected by controlling for the covariate (pretest scores) as a proxy variable for unobserved factors that predict future attributes. The pretest and…
Descriptors: Error of Measurement, Error Correction, Multivariate Analysis, Hierarchical Linear Modeling