Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 6 |
Descriptor
Source
Educational and Psychological… | 6 |
Author
Cao, Chunhua | 2 |
Chen, Yi-Hsin | 2 |
Ferron, John | 2 |
Kim, Eun Sook | 2 |
Bolin, Jocelyn H. | 1 |
Cox, Kyle | 1 |
Finch, W. Holmes | 1 |
Hong, Sehee | 1 |
Kelcey, Benjamin | 1 |
Konstantopoulos, Spyros | 1 |
Li, Wei | 1 |
More ▼ |
Publication Type
Journal Articles | 6 |
Reports - Research | 6 |
Education Level
Elementary Education | 1 |
Grade 7 | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Cox, Kyle; Kelcey, Benjamin – Educational and Psychological Measurement, 2023
Multilevel structural equation models (MSEMs) are well suited for educational research because they accommodate complex systems involving latent variables in multilevel settings. Estimation using Croon's bias-corrected factor score (BCFS) path estimation has recently been extended to MSEMs and demonstrated promise with limited sample sizes. This…
Descriptors: Structural Equation Models, Educational Research, Hierarchical Linear Modeling, Sample Size
Li, Wei; Konstantopoulos, Spyros – Educational and Psychological Measurement, 2023
Cluster randomized control trials often incorporate a longitudinal component where, for example, students are followed over time and student outcomes are measured repeatedly. Besides examining how intervention effects induce changes in outcomes, researchers are sometimes also interested in exploring whether intervention effects on outcomes are…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Longitudinal Studies, Hierarchical Linear Modeling
Son, Sookyoung; Hong, Sehee – Educational and Psychological Measurement, 2021
The purpose of this two-part study is to evaluate methods for multiple group analysis when the comparison group is at the within level with multilevel data, using a multilevel factor mixture model (ML FMM) and a multilevel multiple-indicators multiple-causes (ML MIMIC) model. The performance of these methods was evaluated integrally by a series of…
Descriptors: Hierarchical Linear Modeling, Factor Analysis, Structural Equation Models, Groups
Cao, Chunhua; Kim, Eun Sook; Chen, Yi-Hsin; Ferron, John – Educational and Psychological Measurement, 2021
This study examined the impact of omitting covariates interaction effect on parameter estimates in multilevel multiple-indicator multiple-cause models as well as the sensitivity of fit indices to model misspecification when the between-level, within-level, or cross-level interaction effect was left out in the models. The parameter estimates…
Descriptors: Goodness of Fit, Hierarchical Linear Modeling, Computation, Models
Bolin, Jocelyn H.; Finch, W. Holmes; Stenger, Rachel – Educational and Psychological Measurement, 2019
Multilevel data are a reality for many disciplines. Currently, although multiple options exist for the treatment of multilevel data, most disciplines strictly adhere to one method for multilevel data regardless of the specific research design circumstances. The purpose of this Monte Carlo simulation study is to compare several methods for the…
Descriptors: Hierarchical Linear Modeling, Computation, Statistical Analysis, Maximum Likelihood Statistics
Cao, Chunhua; Kim, Eun Sook; Chen, Yi-Hsin; Ferron, John; Stark, Stephen – Educational and Psychological Measurement, 2019
In multilevel multiple-indicator multiple-cause (MIMIC) models, covariates can interact at the within level, at the between level, or across levels. This study examines the performance of multilevel MIMIC models in estimating and detecting the interaction effect of two covariates through a simulation and provides an empirical demonstration of…
Descriptors: Hierarchical Linear Modeling, Structural Equation Models, Computation, Identification