NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 19 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Christine E. DeMars; Paulius Satkus – Educational and Psychological Measurement, 2024
Marginal maximum likelihood, a common estimation method for item response theory models, is not inherently a Bayesian procedure. However, due to estimation difficulties, Bayesian priors are often applied to the likelihood when estimating 3PL models, especially with small samples. Little focus has been placed on choosing the priors for marginal…
Descriptors: Item Response Theory, Statistical Distributions, Error of Measurement, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Paek, Insu; Lin, Zhongtian; Chalmers, Robert Philip – Educational and Psychological Measurement, 2023
To reduce the chance of Heywood cases or nonconvergence in estimating the 2PL or the 3PL model in the marginal maximum likelihood with the expectation-maximization (MML-EM) estimation method, priors for the item slope parameter in the 2PL model or for the pseudo-guessing parameter in the 3PL model can be used and the marginal maximum a posteriori…
Descriptors: Models, Item Response Theory, Test Items, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Pavlov, Goran; Maydeu-Olivares, Alberto; Shi, Dexin – Educational and Psychological Measurement, 2021
We examine the accuracy of p values obtained using the asymptotic mean and variance (MV) correction to the distribution of the sample standardized root mean squared residual (SRMR) proposed by Maydeu-Olivares to assess the exact fit of SEM models. In a simulation study, we found that under normality, the MV-corrected SRMR statistic provides…
Descriptors: Structural Equation Models, Goodness of Fit, Simulation, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Xiao, Leifeng; Hau, Kit-Tai – Educational and Psychological Measurement, 2023
We examined the performance of coefficient alpha and its potential competitors (ordinal alpha, omega total, Revelle's omega total [omega RT], omega hierarchical [omega h], greatest lower bound [GLB], and coefficient "H") with continuous and discrete data having different types of non-normality. Results showed the estimation bias was…
Descriptors: Statistical Bias, Statistical Analysis, Likert Scales, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Trafimow, David; Wang, Tonghui; Wang, Cong – Educational and Psychological Measurement, 2019
Two recent publications in "Educational and Psychological Measurement" advocated that researchers consider using the a priori procedure. According to this procedure, the researcher specifies, prior to data collection, how close she wishes her sample mean(s) to be to the corresponding population mean(s), and the desired probability of…
Descriptors: Statistical Distributions, Sample Size, Equations (Mathematics), Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Nam, Yeji; Hong, Sehee – Educational and Psychological Measurement, 2021
This study investigated the extent to which class-specific parameter estimates are biased by the within-class normality assumption in nonnormal growth mixture modeling (GMM). Monte Carlo simulations for nonnormal GMM were conducted to analyze and compare two strategies for obtaining unbiased parameter estimates: relaxing the within-class normality…
Descriptors: Probability, Models, Statistical Analysis, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Shin, Myungho; No, Unkyung; Hong, Sehee – Educational and Psychological Measurement, 2019
The present study aims to compare the robustness under various conditions of latent class analysis mixture modeling approaches that deal with auxiliary distal outcomes. Monte Carlo simulations were employed to test the performance of four approaches recommended by previous simulation studies: maximum likelihood (ML) assuming homoskedasticity…
Descriptors: Robustness (Statistics), Multivariate Analysis, Maximum Likelihood Statistics, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Liang, Xinya; Kamata, Akihito; Li, Ji – Educational and Psychological Measurement, 2020
One important issue in Bayesian estimation is the determination of an effective informative prior. In hierarchical Bayes models, the uncertainty of hyperparameters in a prior can be further modeled via their own priors, namely, hyper priors. This study introduces a framework to construct hyper priors for both the mean and the variance…
Descriptors: Bayesian Statistics, Randomized Controlled Trials, Effect Size, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Son, Sookyoung; Lee, Hyunjung; Jang, Yoona; Yang, Junyeong; Hong, Sehee – Educational and Psychological Measurement, 2019
The purpose of the present study is to compare nonnormal distributions (i.e., t, skew-normal, skew-t with equal skew and skew-t with unequal skew) in growth mixture models (GMMs) based on diverse conditions of a number of time points, sample sizes, and skewness for intercepts. To carry out this research, two simulation studies were conducted with…
Descriptors: Statistical Distributions, Statistical Analysis, Structural Equation Models, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Green, Samuel; Xu, Yuning; Thompson, Marilyn S. – Educational and Psychological Measurement, 2018
Parallel analysis (PA) assesses the number of factors in exploratory factor analysis. Traditionally PA compares the eigenvalues for a sample correlation matrix with the eigenvalues for correlation matrices for 100 comparison datasets generated such that the variables are independent, but this approach uses the wrong reference distribution. The…
Descriptors: Factor Analysis, Accuracy, Statistical Distributions, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Trafimow, David – Educational and Psychological Measurement, 2018
Because error variance alternatively can be considered to be the sum of systematic variance associated with unknown variables and randomness, a tripartite assumption is proposed that total variance in the dependent variable can be partitioned into three variance components. These are variance in the dependent variable that is explained by the…
Descriptors: Statistical Analysis, Correlation, Experiments, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Preston, Kathleen Suzanne Johnson; Reise, Steven Paul – Educational and Psychological Measurement, 2014
The nominal response model (NRM), a much understudied polytomous item response theory (IRT) model, provides researchers the unique opportunity to evaluate within-item category distinctions. Polytomous IRT models, such as the NRM, are frequently applied to psychological assessments representing constructs that are unlikely to be normally…
Descriptors: Item Response Theory, Computation, Models, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Padilla, Miguel A.; Divers, Jasmin – Educational and Psychological Measurement, 2013
The performance of the normal theory bootstrap (NTB), the percentile bootstrap (PB), and the bias-corrected and accelerated (BCa) bootstrap confidence intervals (CIs) for coefficient omega was assessed through a Monte Carlo simulation under conditions not previously investigated. Of particular interests were nonnormal Likert-type and binary items.…
Descriptors: Sampling, Statistical Inference, Computation, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Chan, Wai – Educational and Psychological Measurement, 2009
A typical question in multiple regression analysis is to determine if a set of predictors gives the same degree of predictor power in two different populations. Olkin and Finn (1995) proposed two asymptotic-based methods for testing the equality of two population squared multiple correlations, [rho][superscript 2][subscript 1] and…
Descriptors: Multiple Regression Analysis, Intervals, Correlation, Computation
Peer reviewed Peer reviewed
Bang, Jung W.; Schumacker, Randall E.; Schlieve, Paul L. – Educational and Psychological Measurement, 1998
The normality of number distributions generated by various random-number generators were studied, focusing on when the random-number generator reached a normal distribution and at what sample size. Findings suggest the steps that should be followed when using a random-number generator in a Monte Carlo simulation. (SLD)
Descriptors: Monte Carlo Methods, Sample Size, Simulation, Statistical Distributions
Previous Page | Next Page ยป
Pages: 1  |  2