Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 14 |
Descriptor
Sample Size | 15 |
Statistical Inference | 15 |
Computation | 9 |
Statistical Analysis | 9 |
Sampling | 6 |
Error of Measurement | 5 |
Reliability | 5 |
Correlation | 4 |
Monte Carlo Methods | 4 |
Bayesian Statistics | 3 |
Data Analysis | 3 |
More ▼ |
Source
Educational and Psychological… | 15 |
Author
Padilla, Miguel A. | 3 |
Divers, Jasmin | 2 |
Abad, Francisco J. | 1 |
Algina, James | 1 |
Chan, Wai | 1 |
Finstuen, Kenn | 1 |
Fujimoto, Ken A. | 1 |
García-Pérez, Miguel A. | 1 |
Glas, Cees A. W. | 1 |
Gwet, Kilem L. | 1 |
Huang, Francis L. | 1 |
More ▼ |
Publication Type
Journal Articles | 15 |
Reports - Research | 10 |
Reports - Evaluative | 4 |
Reports - Descriptive | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Yan Xia; Selim Havan – Educational and Psychological Measurement, 2024
Although parallel analysis has been found to be an accurate method for determining the number of factors in many conditions with complete data, its application under missing data is limited. The existing literature recommends that, after using an appropriate multiple imputation method, researchers either apply parallel analysis to every imputed…
Descriptors: Data Interpretation, Factor Analysis, Statistical Inference, Research Problems
Gwet, Kilem L. – Educational and Psychological Measurement, 2021
Cohen's kappa coefficient was originally proposed for two raters only, and it later extended to an arbitrarily large number of raters to become what is known as Fleiss' generalized kappa. Fleiss' generalized kappa and its large-sample variance are still widely used by researchers and were implemented in several software packages, including, among…
Descriptors: Sample Size, Statistical Analysis, Interrater Reliability, Computation
Fujimoto, Ken A.; Neugebauer, Sabina R. – Educational and Psychological Measurement, 2020
Although item response theory (IRT) models such as the bifactor, two-tier, and between-item-dimensionality IRT models have been devised to confirm complex dimensional structures in educational and psychological data, they can be challenging to use in practice. The reason is that these models are multidimensional IRT (MIRT) models and thus are…
Descriptors: Bayesian Statistics, Item Response Theory, Sample Size, Factor Structure
Trafimow, David; MacDonald, Justin A. – Educational and Psychological Measurement, 2017
Typically, in education and psychology research, the investigator collects data and subsequently performs descriptive and inferential statistics. For example, a researcher might compute group means and use the null hypothesis significance testing procedure to draw conclusions about the populations from which the groups were drawn. We propose an…
Descriptors: Statistical Inference, Statistics, Data Collection, Equations (Mathematics)
Padilla, Miguel A.; Divers, Jasmin – Educational and Psychological Measurement, 2016
Coefficient omega and alpha are both measures of the composite reliability for a set of items. Unlike coefficient alpha, coefficient omega remains unbiased with congeneric items with uncorrelated errors. Despite this ability, coefficient omega is not as widely used and cited in the literature as coefficient alpha. Reasons for coefficient omega's…
Descriptors: Reliability, Computation, Statistical Analysis, Comparative Analysis
Paek, Insu – Educational and Psychological Measurement, 2016
The effect of guessing on the point estimate of coefficient alpha has been studied in the literature, but the impact of guessing and its interactions with other test characteristics on the interval estimators for coefficient alpha has not been fully investigated. This study examined the impact of guessing and its interactions with other test…
Descriptors: Guessing (Tests), Computation, Statistical Analysis, Test Length
García-Pérez, Miguel A. – Educational and Psychological Measurement, 2017
Null hypothesis significance testing (NHST) has been the subject of debate for decades and alternative approaches to data analysis have been proposed. This article addresses this debate from the perspective of scientific inquiry and inference. Inference is an inverse problem and application of statistical methods cannot reveal whether effects…
Descriptors: Hypothesis Testing, Statistical Inference, Effect Size, Bayesian Statistics
Huang, Francis L. – Educational and Psychological Measurement, 2018
Cluster randomized trials involving participants nested within intact treatment and control groups are commonly performed in various educational, psychological, and biomedical studies. However, recruiting and retaining intact groups present various practical, financial, and logistical challenges to evaluators and often, cluster randomized trials…
Descriptors: Multivariate Analysis, Sampling, Statistical Inference, Data Analysis
Padilla, Miguel A.; Divers, Jasmin – Educational and Psychological Measurement, 2013
The performance of the normal theory bootstrap (NTB), the percentile bootstrap (PB), and the bias-corrected and accelerated (BCa) bootstrap confidence intervals (CIs) for coefficient omega was assessed through a Monte Carlo simulation under conditions not previously investigated. Of particular interests were nonnormal Likert-type and binary items.…
Descriptors: Sampling, Statistical Inference, Computation, Statistical Analysis
Padilla, Miguel A.; Veprinsky, Anna – Educational and Psychological Measurement, 2012
Issues with correlation attenuation due to measurement error are well documented. More than a century ago, Spearman proposed a correction for attenuation. However, this correction has seen very little use since it can potentially inflate the true correlation beyond one. In addition, very little confidence interval (CI) research has been done for…
Descriptors: Correlation, Error of Measurement, Sampling, Statistical Inference
Algina, James; Keselman, H. J.; Penfield, Randall D. – Educational and Psychological Measurement, 2010
The increase in the squared multiple correlation coefficient ([delta]R[superscript 2]) associated with a variable in a regression equation is a commonly used measure of importance in regression analysis. Algina, Keselman, and Penfield found that intervals based on asymptotic principles were typically very inaccurate, even though the sample size…
Descriptors: Computation, Statistical Analysis, Correlation, Statistical Inference
Sueiro, Manuel J.; Abad, Francisco J. – Educational and Psychological Measurement, 2011
The distance between nonparametric and parametric item characteristic curves has been proposed as an index of goodness of fit in item response theory in the form of a root integrated squared error index. This article proposes to use the posterior distribution of the latent trait as the nonparametric model and compares the performance of an index…
Descriptors: Goodness of Fit, Item Response Theory, Nonparametric Statistics, Probability
Chan, Wai – Educational and Psychological Measurement, 2009
A typical question in multiple regression analysis is to determine if a set of predictors gives the same degree of predictor power in two different populations. Olkin and Finn (1995) proposed two asymptotic-based methods for testing the equality of two population squared multiple correlations, [rho][superscript 2][subscript 1] and…
Descriptors: Multiple Regression Analysis, Intervals, Correlation, Computation
Glas, Cees A. W.; Pimentel, Jonald L. – Educational and Psychological Measurement, 2008
In tests with time limits, items at the end are often not reached. Usually, the pattern of missing responses depends on the ability level of the respondents; therefore, missing data are not ignorable in statistical inference. This study models data using a combination of two item response theory (IRT) models: one for the observed response data and…
Descriptors: Intelligence Tests, Statistical Inference, Item Response Theory, Modeling (Psychology)

Finstuen, Kenn; And Others – Educational and Psychological Measurement, 1994
Computation of a one-way analysis of variance (ANOVA) "F" ratio from descriptive statistics in the absence of raw data is corrected from two sources. Means associated with inferential statistical hypotheses are identified as estimable population parameters. (Author)
Descriptors: Analysis of Variance, Computation, Estimation (Mathematics), Hypothesis Testing