NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 63 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wu, Tong; Kim, Stella Y.; Westine, Carl – Educational and Psychological Measurement, 2023
For large-scale assessments, data are often collected with missing responses. Despite the wide use of item response theory (IRT) in many testing programs, however, the existing literature offers little insight into the effectiveness of various approaches to handling missing responses in the context of scale linking. Scale linking is commonly used…
Descriptors: Data Analysis, Responses, Statistical Analysis, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Menglin Xu; Jessica A. R. Logan – Educational and Psychological Measurement, 2024
Research designs that include planned missing data are gaining popularity in applied education research. These methods have traditionally relied on introducing missingness into data collections using the missing completely at random (MCAR) mechanism. This study assesses whether planned missingness can also be implemented when data are instead…
Descriptors: Research Design, Research Methodology, Monte Carlo Methods, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Wind, Stefanie A.; Schumacker, Randall E. – Educational and Psychological Measurement, 2021
Researchers frequently use Rasch models to analyze survey responses because these models provide accurate parameter estimates for items and examinees when there are missing data. However, researchers have not fully considered how missing data affect the accuracy of dimensionality assessment in Rasch analyses such as principal components analysis…
Descriptors: Item Response Theory, Data, Factor Analysis, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Goretzko, David – Educational and Psychological Measurement, 2022
Determining the number of factors in exploratory factor analysis is arguably the most crucial decision a researcher faces when conducting the analysis. While several simulation studies exist that compare various so-called factor retention criteria under different data conditions, little is known about the impact of missing data on this process.…
Descriptors: Factor Analysis, Research Problems, Data, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Goretzko, David; Heumann, Christian; Bühner, Markus – Educational and Psychological Measurement, 2020
Exploratory factor analysis is a statistical method commonly used in psychological research to investigate latent variables and to develop questionnaires. Although such self-report questionnaires are prone to missing values, there is not much literature on this topic with regard to exploratory factor analysis--and especially the process of factor…
Descriptors: Factor Analysis, Data Analysis, Research Methodology, Psychological Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Shi, Dexin; Lee, Taehun; Fairchild, Amanda J.; Maydeu-Olivares, Alberto – Educational and Psychological Measurement, 2020
This study compares two missing data procedures in the context of ordinal factor analysis models: pairwise deletion (PD; the default setting in Mplus) and multiple imputation (MI). We examine which procedure demonstrates parameter estimates and model fit indices closer to those of complete data. The performance of PD and MI are compared under a…
Descriptors: Factor Analysis, Statistical Analysis, Computation, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
De Raadt, Alexandra; Warrens, Matthijs J.; Bosker, Roel J.; Kiers, Henk A. L. – Educational and Psychological Measurement, 2019
Cohen's kappa coefficient is commonly used for assessing agreement between classifications of two raters on a nominal scale. Three variants of Cohen's kappa that can handle missing data are presented. Data are considered missing if one or both ratings of a unit are missing. We study how well the variants estimate the kappa value for complete data…
Descriptors: Interrater Reliability, Data, Statistical Analysis, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Xiao, Jiaying; Bulut, Okan – Educational and Psychological Measurement, 2020
Large amounts of missing data could distort item parameter estimation and lead to biased ability estimates in educational assessments. Therefore, missing responses should be handled properly before estimating any parameters. In this study, two Monte Carlo simulation studies were conducted to compare the performance of four methods in handling…
Descriptors: Data, Computation, Ability, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Wind, Stefanie A.; Patil, Yogendra J. – Educational and Psychological Measurement, 2018
Recent research has explored the use of models adapted from Mokken scale analysis as a nonparametric approach to evaluating rating quality in educational performance assessments. A potential limiting factor to the widespread use of these techniques is the requirement for complete data, as practical constraints in operational assessment systems…
Descriptors: Scaling, Data, Interrater Reliability, Writing Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Wiens, Stefan; Nilsson, Mats E. – Educational and Psychological Measurement, 2017
Because of the continuing debates about statistics, many researchers may feel confused about how to analyze and interpret data. Current guidelines in psychology advocate the use of effect sizes and confidence intervals (CIs). However, researchers may be unsure about how to extract effect sizes from factorial designs. Contrast analysis is helpful…
Descriptors: Data Analysis, Effect Size, Computation, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Trafimow, David; MacDonald, Justin A. – Educational and Psychological Measurement, 2017
Typically, in education and psychology research, the investigator collects data and subsequently performs descriptive and inferential statistics. For example, a researcher might compute group means and use the null hypothesis significance testing procedure to draw conclusions about the populations from which the groups were drawn. We propose an…
Descriptors: Statistical Inference, Statistics, Data Collection, Equations (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Schweizer, Karl; Troche, Stefan – Educational and Psychological Measurement, 2018
In confirmatory factor analysis quite similar models of measurement serve the detection of the difficulty factor and the factor due to the item-position effect. The item-position effect refers to the increasing dependency among the responses to successively presented items of a test whereas the difficulty factor is ascribed to the wide range of…
Descriptors: Investigations, Difficulty Level, Factor Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Wind, Stefanie A.; Engelhard, George, Jr. – Educational and Psychological Measurement, 2016
Mokken scale analysis is a probabilistic nonparametric approach that offers statistical and graphical tools for evaluating the quality of social science measurement without placing potentially inappropriate restrictions on the structure of a data set. In particular, Mokken scaling provides a useful method for evaluating important measurement…
Descriptors: Nonparametric Statistics, Statistical Analysis, Measurement, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Francis L. – Educational and Psychological Measurement, 2018
Cluster randomized trials involving participants nested within intact treatment and control groups are commonly performed in various educational, psychological, and biomedical studies. However, recruiting and retaining intact groups present various practical, financial, and logistical challenges to evaluators and often, cluster randomized trials…
Descriptors: Multivariate Analysis, Sampling, Statistical Inference, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Olvera Astivia, Oscar L.; Zumbo, Bruno D. – Educational and Psychological Measurement, 2015
To further understand the properties of data-generation algorithms for multivariate, nonnormal data, two Monte Carlo simulation studies comparing the Vale and Maurelli method and the Headrick fifth-order polynomial method were implemented. Combinations of skewness and kurtosis found in four published articles were run and attention was…
Descriptors: Data, Simulation, Monte Carlo Methods, Comparative Analysis
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5