NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
James Ohisei Uanhoro – Educational and Psychological Measurement, 2024
Accounting for model misspecification in Bayesian structural equation models is an active area of research. We present a uniquely Bayesian approach to misspecification that models the degree of misspecification as a parameter--a parameter akin to the correlation root mean squared residual. The misspecification parameter can be interpreted on its…
Descriptors: Bayesian Statistics, Structural Equation Models, Simulation, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Ranger, Jochen; Kuhn, Jörg Tobias; Ortner, Tuulia M. – Educational and Psychological Measurement, 2020
The hierarchical model of van der Linden is the most popular model for responses and response times in tests. It is composed of two separate submodels--one for the responses and one for the response times--that are joined at a higher level. The submodel for the response times is based on the lognormal distribution. The lognormal distribution is a…
Descriptors: Reaction Time, Tests, Statistical Distributions, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Marmolejo-Ramos, Fernando; Cousineau, Denis – Educational and Psychological Measurement, 2017
The number of articles showing dissatisfaction with the null hypothesis statistical testing (NHST) framework has been progressively increasing over the years. Alternatives to NHST have been proposed and the Bayesian approach seems to have achieved the highest amount of visibility. In this last part of the special issue, a few alternative…
Descriptors: Hypothesis Testing, Bayesian Statistics, Evaluation Methods, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Devlieger, Ines; Talloen, Wouter; Rosseel, Yves – Educational and Psychological Measurement, 2019
Factor score regression (FSR) is a popular alternative for structural equation modeling. Naively applying FSR induces bias for the estimators of the regression coefficients. Croon proposed a method to correct for this bias. Next to estimating effects without bias, interest often lies in inference of regression coefficients or in the fit of the…
Descriptors: Regression (Statistics), Computation, Goodness of Fit, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Marsman, Maarten; Wagenmakers, Eric-Jan – Educational and Psychological Measurement, 2017
P values have been critiqued on several grounds but remain entrenched as the dominant inferential method in the empirical sciences. In this article, we elaborate on the fact that in many statistical models, the one-sided "P" value has a direct Bayesian interpretation as the approximate posterior mass for values lower than zero. The…
Descriptors: Bayesian Statistics, Statistical Inference, Probability, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Grice, James W.; Yepez, Maria; Wilson, Nicole L.; Shoda, Yuichi – Educational and Psychological Measurement, 2017
An alternative to null hypothesis significance testing is presented and discussed. This approach, referred to as observation-oriented modeling, is centered on model building in an effort to explicate the structures and processes believed to generate a set of observations. In terms of analysis, this novel approach complements traditional methods…
Descriptors: Hypothesis Testing, Models, Observation, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Guerra-Peña, Kiero; Steinley, Douglas – Educational and Psychological Measurement, 2016
Growth mixture modeling is generally used for two purposes: (1) to identify mixtures of normal subgroups and (2) to approximate oddly shaped distributions by a mixture of normal components. Often in applied research this methodology is applied to both of these situations indistinctly: using the same fit statistics and likelihood ratio tests. This…
Descriptors: Growth Models, Bayesian Statistics, Sampling, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Valente, Matthew J.; Gonzalez, Oscar; Miocevic, Milica; MacKinnon, David P. – Educational and Psychological Measurement, 2016
Methods to assess the significance of mediated effects in education and the social sciences are well studied and fall into two categories: single sample methods and computer-intensive methods. A popular single sample method to detect the significance of the mediated effect is the test of joint significance, and a popular computer-intensive method…
Descriptors: Structural Equation Models, Sampling, Statistical Inference, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Leth-Steensen, Craig; Gallitto, Elena – Educational and Psychological Measurement, 2016
A large number of approaches have been proposed for estimating and testing the significance of indirect effects in mediation models. In this study, four sets of Monte Carlo simulations involving full latent variable structural equation models were run in order to contrast the effectiveness of the currently popular bias-corrected bootstrapping…
Descriptors: Mediation Theory, Structural Equation Models, Monte Carlo Methods, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
France, Stephen L.; Batchelder, William H. – Educational and Psychological Measurement, 2015
Cultural consensus theory (CCT) is a data aggregation technique with many applications in the social and behavioral sciences. We describe the intuition and theory behind a set of CCT models for continuous type data using maximum likelihood inference methodology. We describe how bias parameters can be incorporated into these models. We introduce…
Descriptors: Maximum Likelihood Statistics, Test Items, Difficulty Level, Test Theory
Peer reviewed Peer reviewed
Bedeian, Arthur G.; Day, David V.; Kelloway, E. Kevin – Educational and Psychological Measurement, 1997
Methods by which structural models correct for the effects of attenuation due to measurement error are reviewed, and implications of such disattenuation for interpreting the results of structural equation models are considered. Recommendations are made for improving the practice of disattenuation, and caution is urged in drawing inferences based…
Descriptors: Error of Measurement, Estimation (Mathematics), Mathematical Models, Statistical Inference
Peer reviewed Peer reviewed
Barchard, Kimberly A.; Hakstian, A. Ralph – Educational and Psychological Measurement, 1997
The distinction between Type 1 and Type 12 sampling in connection with measurement data is discussed, and a method is presented for simulating data arising from Type 12 sampling. A Monte Carlo study is described that shows conditions under which precise confidence level control under Type 12 sampling is maintained. (SLD)
Descriptors: Models, Monte Carlo Methods, Sampling, Simulation
Peer reviewed Peer reviewed
Hopkins, Kenneth D.; Weeks, Douglas L. – Educational and Psychological Measurement, 1990
This paper makes the point that descriptive and inferential measures of nonnormality and graphic displays of the frequency distribution of important variables should be routine in research reporting. This point is particularly true for research involving measures with nonarbitrary metrics where the distribution shape is unaffected by measurement…
Descriptors: Equations (Mathematics), Graphs, Mathematical Models, Research Reports
Peer reviewed Peer reviewed
Jones, W. Paul – Educational and Psychological Measurement, 1991
A Bayesian alternative to interpretations based on classical reliability theory is presented. Procedures are detailed for calculation of a posterior score and credible interval with joint consideration of item sample and occasion error. (Author/SLD)
Descriptors: Bayesian Statistics, Equations (Mathematics), Mathematical Models, Statistical Inference