Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 22 |
Since 2006 (last 20 years) | 22 |
Descriptor
Source
Grantee Submission | 22 |
Author
McNamara, Danielle S. | 9 |
Danielle S. McNamara | 5 |
Balyan, Renu | 4 |
Renu Balyan | 4 |
Dascalu, Mihai | 3 |
McCarthy, Kathryn S. | 3 |
Mihai Dascalu | 3 |
Nicula, Bogdan | 3 |
Allen, Laura K. | 2 |
Crossley, Scott A. | 2 |
Jinnie Shin | 2 |
More ▼ |
Publication Type
Reports - Research | 19 |
Speeches/Meeting Papers | 11 |
Journal Articles | 7 |
Reports - Descriptive | 3 |
Information Analyses | 1 |
Education Level
Elementary Education | 3 |
Higher Education | 3 |
Postsecondary Education | 3 |
Early Childhood Education | 2 |
Elementary Secondary Education | 2 |
Grade 2 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Grade 9 | 1 |
High Schools | 1 |
Junior High Schools | 1 |
More ▼ |
Audience
Location
California | 2 |
Florida | 1 |
Texas | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Flesch Kincaid Grade Level… | 2 |
What Works Clearinghouse Rating
Anglin, Kylie; Boguslav, Arielle; Hall, Todd – Grantee Submission, 2020
Text classification has allowed researchers to analyze natural language data at a previously impossible scale. However, a text classifier is only as valid as the the annotations on which it was trained. Further, the cost of training a classifier depends on annotators' ability to quickly and accurately apply the coding scheme to each text. Thus,…
Descriptors: Documentation, Natural Language Processing, Classification, Research Design
Jia Tracy Shen; Michiharu Yamashita; Ethan Prihar; Neil Heffernan; Xintao Wu; Sean McGrew; Dongwon Lee – Grantee Submission, 2021
Educational content labeled with proper knowledge components (KCs) are particularly useful to teachers or content organizers. However, manually labeling educational content is labor intensive and error-prone. To address this challenge, prior research proposed machine learning based solutions to auto-label educational content with limited success.…
Descriptors: Mathematics Education, Knowledge Level, Video Technology, Educational Technology
Wan, Qian; Crossley, Scott; Allen, Laura; McNamara, Danielle – Grantee Submission, 2020
In this paper, we extracted content-based and structure-based features of text to predict human annotations for claims and nonclaims in argumentative essays. We compared Logistic Regression, Bernoulli Naive Bayes, Gaussian Naive Bayes, Linear Support Vector Classification, Random Forest, and Neural Networks to train classification models. Random…
Descriptors: Persuasive Discourse, Essays, Writing Evaluation, Natural Language Processing
Crossley, Scott A.; Kim, Minkyung; Allen, Laura K.; McNamara, Danielle S. – Grantee Submission, 2019
Summarization is an effective strategy to promote and enhance learning and deep comprehension of texts. However, summarization is seldom implemented by teachers in classrooms because the manual evaluation of students' summaries requires time and effort. This problem has led to the development of automated models of summarization quality. However,…
Descriptors: Automation, Writing Evaluation, Natural Language Processing, Artificial Intelligence
Brendan Bartanen; Andrew Kwok; Andrew Avitabile; Brian Heseung Kim – Grantee Submission, 2025
Heightened concerns about the health of the teaching profession highlight the importance of studying the early teacher pipeline. This exploratory, descriptive article examines preservice teachers' expressed motivation for pursuing a teaching career. Using data from a large teacher education program in Texas, we use a natural language processing…
Descriptors: Career Choice, Teaching (Occupation), Teacher Education Programs, Preservice Teachers
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2020
For decades, educators have relied on readability metrics that tend to oversimplify dimensions of text difficulty. This study examines the potential of applying advanced artificial intelligence methods to the educational problem of assessing text difficulty. The combination of hierarchical machine learning and natural language processing (NLP) is…
Descriptors: Natural Language Processing, Artificial Intelligence, Man Machine Systems, Classification
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2018
While hierarchical machine learning approaches have been used to classify texts into different content areas, this approach has, to our knowledge, not been used in the automated assessment of text difficulty. This study compared the accuracy of four classification machine learning approaches (flat, one-vs-one, one-vs-all, and hierarchical) using…
Descriptors: Artificial Intelligence, Classification, Comparative Analysis, Prediction
Nicula, Bogdan; Perret, Cecile A.; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2020
Open-ended comprehension questions are a common type of assessment used to evaluate how well students understand one of multiple documents. Our aim is to use natural language processing (NLP) to infer the level and type of inferencing within readers' answers to comprehension questions using linguistic and semantic features within their responses.…
Descriptors: Natural Language Processing, Taxonomy, Responses, Semantics
Marilena Panaite; Mihai Dascalu; Amy Johnson; Renu Balyan; Jianmin Dai; Danielle S. McNamara; Stefan Trausan-Matu – Grantee Submission, 2018
Intelligent Tutoring Systems (ITSs) are aimed at promoting acquisition of knowledge and skills by providing relevant and appropriate feedback during students' practice activities. ITSs for literacy instruction commonly assess typed responses using Natural Language Processing (NLP) algorithms. One step in this direction often requires building a…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Algorithms, Decision Making
Nicula, Bogdan; Dascalu, Mihai; Newton, Natalie N.; Orcutt, Ellen; McNamara, Danielle S. – Grantee Submission, 2021
Learning to paraphrase supports both writing ability and reading comprehension, particularly for less skilled learners. As such, educational tools that integrate automated evaluations of paraphrases can be used to provide timely feedback to enhance learner paraphrasing skills more efficiently and effectively. Paraphrase identification is a popular…
Descriptors: Computational Linguistics, Feedback (Response), Classification, Learning Processes
Nicula, Bogdan; Dascalu, Mihai; Newton, Natalie; Orcutt, Ellen; McNamara, Danielle S. – Grantee Submission, 2021
The ability to automatically assess the quality of paraphrases can be very useful for facilitating literacy skills and providing timely feedback to learners. Our aim is twofold: a) to automatically evaluate the quality of paraphrases across four dimensions: lexical similarity, syntactic similarity, semantic similarity and paraphrase quality, and…
Descriptors: Phrase Structure, Networks, Semantics, Feedback (Response)
Jinnie Shin; Renu Balyan; Michelle P. Banawan; Tracy Arner; Walter L. Leite; Danielle S. McNamara – Grantee Submission, 2023
Despite the proliferation of video-based instruction and its benefits--such as promoting student autonomy and self-paced learning--the complexities of online teaching remain a challenge. To be effective, educators require extensive training in digital teaching methodologies. As such, there's a pressing need to examine and comprehend the…
Descriptors: Algebra, Mathematics Instruction, Video Technology, Personal Autonomy
Jones, Michael N. – Grantee Submission, 2018
Abstraction is a core principle of Distributional Semantic Models (DSMs) that learn semantic representations for words by applying dimensional reduction to statistical redundancies in language. Although the posited learning mechanisms vary widely, virtually all DSMs are prototype models in that they create a single abstract representation of a…
Descriptors: Abstract Reasoning, Semantics, Memory, Learning Processes
Cai, Zhiqiang; Siebert-Evenstone, Amanda; Eagan, Brendan; Shaffer, David Williamson; Hu, Xiangen; Graesser, Arthur C. – Grantee Submission, 2019
Coding is a process of assigning meaning to a given piece of evidence. Evidence may be found in a variety of data types, including documents, research interviews, posts from social media, conversations from learning platforms, or any source of data that may provide insights for the questions under qualitative study. In this study, we focus on text…
Descriptors: Semantics, Computational Linguistics, Evidence, Coding
Anglin, Kylie L. – Grantee Submission, 2019
Education researchers have traditionally faced severe data limitations in studying local policy variation; administrative datasets capture only a fraction of districts' policy decisions, and it can be expensive to collect more nuanced implementation data from teachers and leaders. Natural language processing and web-scraping techniques can help…
Descriptors: Natural Language Processing, Educational Policy, Web Sites, Decision Making
Previous Page | Next Page ยป
Pages: 1 | 2