Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 5 |
Descriptor
Source
Grantee Submission | 5 |
Author
Abolfazl Asudeh | 1 |
Anqi Fa | 1 |
Betancourt, Michael | 1 |
Brubaker, Marcus A. | 1 |
Cain, Meghan K. | 1 |
Carpenter, Bob | 1 |
Fei Gao | 1 |
Gelman, Andrew | 1 |
Goodrich, Ben | 1 |
Guo, Jiqiang | 1 |
Hadis Anahideh | 1 |
More ▼ |
Publication Type
Reports - Research | 3 |
Journal Articles | 2 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Aid to Families with… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Ziqian Xu; Fei Gao; Anqi Fa; Wen Qu; Zhiyong Zhang – Grantee Submission, 2024
Conditional process models, including moderated mediation models and mediated moderation models, are widely used in behavioral science research. However, few studies have examined approaches to conduct statistical power analysis for such models and there is also a lack of software packages that provide such power analysis functionalities. In this…
Descriptors: Statistical Analysis, Sample Size, Mediation Theory, Monte Carlo Methods
Hadis Anahideh; Nazanin Nezami; Abolfazl Asudeh – Grantee Submission, 2025
It is of critical importance to be aware of the historical discrimination embedded in the data and to consider a fairness measure to reduce bias throughout the predictive modeling pipeline. Given various notions of fairness defined in the literature, investigating the correlation and interaction among metrics is vital for addressing unfairness.…
Descriptors: Correlation, Measurement Techniques, Guidelines, Semantics
Xu Qin; Lijuan Wang – Grantee Submission, 2023
Research questions regarding how, for whom, and where a treatment achieves its effect on an outcome have become increasingly valued in substantive research. Such questions can be answered by causal moderated mediation analysis, which assesses the heterogeneity of the mediation mechanism underlying the treatment effect across individual and…
Descriptors: Causal Models, Mediation Theory, Computer Software, Statistical Analysis
Cain, Meghan K.; Zhang, Zhiyong – Grantee Submission, 2018
Despite its importance to structural equation modeling, model evaluation remains underdeveloped in the Bayesian SEM framework. Posterior predictive p-values (PPP) and deviance information criteria (DIC) are now available in popular software for Bayesian model evaluation, but they remain under-utilized. This is largely due to the lack of…
Descriptors: Bayesian Statistics, Structural Equation Models, Monte Carlo Methods, Sample Size
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods