Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 7 |
Descriptor
Algorithms | 7 |
Correlation | 7 |
Comparative Analysis | 4 |
Validity | 4 |
Mathematics Instruction | 3 |
Mathematics Tests | 3 |
Models | 3 |
Algebra | 2 |
Anxiety | 2 |
Bayesian Statistics | 2 |
Computer Assisted Instruction | 2 |
More ▼ |
Source
Grantee Submission | 7 |
Author
Amisha Jindal | 2 |
Ashish Gurung | 2 |
Erin Ottmar | 2 |
Ji-Eun Lee | 2 |
Reilly Norum | 2 |
Sanika Nitin Patki | 2 |
Abolfazl Asudeh | 1 |
Batley, Prathiba Natesan | 1 |
Edgar C. Merkle | 1 |
Fan Yang | 1 |
Hadis Anahideh | 1 |
More ▼ |
Publication Type
Reports - Research | 6 |
Journal Articles | 3 |
Reports - Descriptive | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Junior High Schools | 2 |
Middle Schools | 2 |
Secondary Education | 2 |
Early Childhood Education | 1 |
Elementary Education | 1 |
Grade 2 | 1 |
Primary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Edgar C. Merkle; Oludare Ariyo; Sonja D. Winter; Mauricio Garnier-Villarreal – Grantee Submission, 2023
We review common situations in Bayesian latent variable models where the prior distribution that a researcher specifies differs from the prior distribution used during estimation. These situations can arise from the positive definite requirement on correlation matrices, from sign indeterminacy of factor loadings, and from order constraints on…
Descriptors: Models, Bayesian Statistics, Correlation, Evaluation Methods
Hadis Anahideh; Nazanin Nezami; Abolfazl Asudeh – Grantee Submission, 2025
It is of critical importance to be aware of the historical discrimination embedded in the data and to consider a fairness measure to reduce bias throughout the predictive modeling pipeline. Given various notions of fairness defined in the literature, investigating the correlation and interaction among metrics is vital for addressing unfairness.…
Descriptors: Correlation, Measurement Techniques, Guidelines, Semantics
Batley, Prathiba Natesan; Minka, Tom; Hedges, Larry Vernon – Grantee Submission, 2020
Immediacy is one of the necessary criteria to show strong evidence of treatment effect in single case experimental designs (SCEDs). With the exception of Natesan and Hedges (2017) no inferential statistical tool has been used to demonstrate or quantify it until now. We investigate and quantify immediacy by treating the change-points between the…
Descriptors: Bayesian Statistics, Monte Carlo Methods, Statistical Inference, Markov Processes
Nesrin Sahin; Juli K. Dixon; Robert C. Schoen – Grantee Submission, 2020
This observational study used data from 270 second-grade students to investigate the association between students' strategy use for multidigit addition and subtraction and their mathematics achievement. Based on strategies they used during a mathematics interview, students were classified into the following strategy groups: (a) standard algorithm,…
Descriptors: Mathematics Achievement, Comparative Analysis, Grade 2, Elementary School Students
Xu Qin; Fan Yang – Grantee Submission, 2022
Causal inference regarding a hypothesized mediation mechanism relies on the assumptions that there are no omitted pretreatment confounders (i.e., confounders preceding the treatment) of the treatment-mediator, treatment-outcome, and mediator-outcome relationships, and there are no posttreatment confounders (i.e., confounders affected by the…
Descriptors: Simulation, Correlation, Inferences, Attribution Theory
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2023
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction; and…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2022
This paper demonstrates how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. We examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance prediction; and (2) what types of in-game features were associated with student…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games