NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Linh Huynh; Danielle S. McNamara – Grantee Submission, 2025
We conducted two experiments to assess the alignment between Generative AI (GenAI) text personalization and hypothetical readers' profiles. In Experiment 1, four LLMs (i.e., Claude 3.5 Sonnet; Llama; Gemini Pro 1.5; ChatGPT 4) were prompted to tailor 10 science texts (i.e., biology, chemistry, physics) to accommodate four different profiles…
Descriptors: Natural Language Processing, Profiles, Individual Differences, Semantics
Peer reviewed Peer reviewed
Direct linkDirect link
Brendan Bartanen; Andrew Kwok; Andrew Avitabile; Brian Heseung Kim – Grantee Submission, 2025
Heightened concerns about the health of the teaching profession highlight the importance of studying the early teacher pipeline. This exploratory, descriptive article examines preservice teachers' expressed motivation for pursuing a teaching career. Using data from a large teacher education program in Texas, we use a natural language processing…
Descriptors: Career Choice, Teaching (Occupation), Teacher Education Programs, Preservice Teachers
Öncel, Püren; Flynn, Lauren E.; Sonia, Allison N.; Barker, Kennis E.; Lindsay, Grace C.; McClure, Caleb M.; McNamara, Danielle S.; Allen, Laura K. – Grantee Submission, 2021
Automated Writing Evaluation systems have been developed to help students improve their writing skills through the automated delivery of both summative and formative feedback. These systems have demonstrated strong potential in a variety of educational contexts; however, they remain limited in their personalization and scope. The purpose of the…
Descriptors: Computer Assisted Instruction, Writing Evaluation, Formative Evaluation, Summative Evaluation
Balyan, Renu; Crossley, Scott A.; Brown, William, III; Karter, Andrew J.; McNamara, Danielle S.; Liu, Jennifer Y.; Lyles, Courtney R.; Schillinger, Dean – Grantee Submission, 2019
Limited health literacy is a barrier to optimal healthcare delivery and outcomes. Current measures requiring patients to self-report limitations are time-consuming and may be considered intrusive by some. This makes widespread classification of patient health literacy challenging. The objective of this study was to develop and validate…
Descriptors: Patients, Literacy, Health Services, Profiles
Schillinger, Dean; Balyan, Renu; Crossley, Scott A.; McNamara, Danielle S.; Liu, Jennifer Y.; Karter, Andrew J. – Grantee Submission, 2020
Objective: To develop novel, scalable, and valid literacy profiles for identifying limited health literacy patients by harnessing natural language processing. Data Source: With respect to the linguistic content, we analyzed 283 216 secure messages sent by 6941 diabetes patients to physicians within an integrated system's electronic portal.…
Descriptors: Literacy, Profiles, Computational Linguistics, Syntax
Allen, Laura K.; Snow, Erica L.; McNamara, Danielle S. – Grantee Submission, 2016
A commonly held belief among educators, researchers, and students is that high-quality texts are easier to read than low-quality texts, as they contain more engaging narrative and story-like elements. Interestingly, these assumptions have typically failed to be supported by the literature on writing. Previous research suggests that higher quality…
Descriptors: Role, Writing (Composition), Natural Language Processing, Hypothesis Testing